cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001620 Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma.

Original entry on oeis.org

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, 3, 5, 9, 8, 8, 0, 5, 7, 6, 7, 2, 3, 4, 8, 8, 4, 8, 6, 7, 7, 2, 6, 7, 7, 7, 6, 6, 4, 6, 7, 0, 9, 3, 6, 9, 4, 7, 0, 6, 3, 2, 9, 1, 7, 4, 6, 7, 4, 9
Offset: 0

Views

Author

Keywords

Comments

Yee (2010) computed 29844489545 decimal digits of gamma.
Decimal expansion of 0th Stieltjes constant. - Paul Muljadi, Aug 24 2010
The value of Euler's constant is close to (18/Pi^2)*Sum_{n>=0} 1/4^(2^n) = 0.5770836328... = (6/5) * A082020 * A078585. - Arkadiusz Wesolowski, Mar 27 2012

Examples

			0.577215664901532860606512090082402431042...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 259-262.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 28-40, 166, 365.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.
  • B. Gugger, Problèmes corrigés de Mathématiques posés aux concours des Ecoles Militaires, Ecole de l'Air, 1992, option MP, 1ère épreuve, Ellipses, 1993, pp. 167-184.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.3 Infinite Series, pp. 273-274.
  • J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • J.-M. Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, Exercice 4.3.14, pages 371 and 387, 1997.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 166.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:5 at page 13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 28.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1990.

Crossrefs

Cf. A002852 (continued fraction).
Cf. A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A231095 (power tower using this constant).
Denote the generalized Euler constants, also called Stieltjes constants, by Sti(n).
Sti(0) = A001620 (Euler's constant gamma) (cf. A262235/A075266),
Sti(1/2) = A301816, Sti(1) = A082633 (cf. A262382/A262383), Sti(3/2) = A301817,
Sti(2) = A086279 (cf. A262384/A262385), Sti(3) = A086280 (cf. A262386/A262387),
Sti(4) = A086281, Sti(5) = A086282, Sti(6) = A183141, Sti(7) = A183167,
Sti(8) = A183206, Sti(9) = A184853, Sti(10) = A184854.

Programs

  • Magma
    EulerGamma(250); // G. C. Greubel, Aug 21 2018
    
  • Maple
    Digits := 100; evalf(gamma);
  • Mathematica
    RealDigits[ EulerGamma, 10, 105][[1]] (* Robert G. Wilson v, Nov 01 2004 *)
    (1/2) N[Sum[PolyGamma[0, 1/2 + 2^k] - PolyGamma[0, 2^k], {k, 0, Infinity }], 30] (* Dimitri Papadopoulos, Nov 30 2016 *)
  • PARI
    default(realprecision, 20080); x=Euler; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b001620.txt", n, " ", d));  \\ Harry J. Smith, Apr 15 2009
    
  • Python
    from sympy import S
    def aupton(digs): return [int(d) for d in str(S.EulerGamma.n(digs+2))[2:-2]]
    print(aupton(99)) # Michael S. Branicky, Nov 22 2021

Formula

Limit_{n->oo} (1 + 1/2 + ... + 1/n - log(n)) (definition).
Sum_{n>=1} (1/n - log(1 + 1/n)), since log(1 + 1/1) + ... + log(1 + 1/n) telescopes to log(n+1) and lim_{n->infinity} (log(n+1) - log(n)) = 0.
Integral_{x=0..1} -log(log(1/x)). - Robert G. Wilson v, Jan 04 2006
Integral_{x=0..1,y=0..1} (x-1)/((1-x*y)*log(x*y)). - (see Sondow 2005)
Integral_{x=0..oo} -log(x)*exp(-x). - Jean-François Alcover, Mar 22 2013
Integral_{x=0..1} (1 - exp(-x) - exp(-1/x))/x. - Jean-François Alcover, Apr 11 2013
Equals the lim_{n->oo} fractional part of zeta(1+1/n). The corresponding fractional part for x->1 from below, using n-1/n, is -(1-a(n)). The fractional part found in this way for the first derivative of Zeta as x->1 is A252898. - Richard R. Forberg, Dec 24 2014
Limit_{x->1} (Zeta(x)-1/(x-1)) from Whittaker and Watson. 1990. - Richard R. Forberg, Dec 30 2014
exp(gamma) = lim_{i->oo} exp(H(i)) - exp(H(i-1)), where H(i) = i-th Harmonic number. For a given n this converges faster than the standard definition, and two above, after taking the logarithm (e.g., 13 digits vs. 6 digits at n=3000000 or x=1+1/3000000). - Richard R. Forberg, Jan 08 2015
Limit_{n->oo} (1/2) Sum_{j>=1} Sum_{k=1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n) (k + j*n))). - Dimitri Papadopoulos, Jan 13 2016
Equals 25/27 minus lim_{x->oo} 2^(x+1)/3 - (22/27)*(4/3)^x - Zeta(Sum_{i>=1} (H_i/i^x)), letting H_i denote the i-th harmonic number. - John M. Campbell, Jan 29 2016
Limit_{x->0} -B'(x), where B(x) = -x zeta(1-x) is the "Bernoulli function". - Jean-François Alcover, May 20 2016
Sum_{k>=0} (1/2)(digamma(1/2+2^k) - digamma(2^k)) where digamma(x) = d/dx log(Gamma(x)). - Dimitri Papadopoulos, Nov 14 2016
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma = -Pi*Integral_{0..oo} a/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = -(Pi/(n+1))* Integral_{0..oo} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k) *a^(n-2*k). - Peter Luschny, Apr 19 2018
Limit_{s->0} (Zeta'(1-s)*s - Zeta(1-s)) / (Zeta(1-s)*s). - Peter Luschny, Jun 18 2018
log(2) * (gamma - (1/2) * log(2)) = -Sum_{v >= 1} (1/2^(v+1)) * (Delta^v (log(w)/w))|{w=1}, where Delta(f(w)) = f(w) - f(w + 1) (forward difference). [This is a formula from Lerch (1897).] - _Petros Hadjicostas, Jul 21 2019
From Amiram Eldar, Jul 05 2020: (Start)
Equals Integral_{x=1..oo} (1/floor(x) - 1/x) dx.
Equals Integral_{x=0..1} (1/(1-x) + 1/log(x)) dx = Integral_{x=0..1} (1/x + 1/log(1-x)) dx.
Equals -Integral_{-oo..oo} x*exp(x-exp(x)) dx.
Equals Sum_{k>=1} (-1)^k * floor(log_2(k))/k.
Equals (-1/2) * Sum_{k>=1} (Lambda(k)-1)/k, where Lambda is the Mangoldt function. (End)
Equals Integral_{0..1} -1/LambertW(-1,-x*exp(-x)) dx = 1 + Integral_{0..1} LambertW(-1/x*exp(-1/x)) dx. - Gleb Koloskov, Jun 12 2021
Equals Sum_{k>=2} (-1)^k * zeta(k)/k. - Vaclav Kotesovec, Jun 19 2021
Equals lim_{x->oo} log(x) - Sum_{p prime <= x} log(p)/(p-1). - Amiram Eldar, Jun 29 2021
Limit_{n->oo} (2*HarmonicNumber(n) - HarmonicNumber(n^2)). After answer by Eric Naslund on Mathematics Stack Exchange, on Jun 21 2011. - Mats Granvik, Jul 19 2021
Equals Integral_{x=0..oo} ( exp(-x) * (1/(1-exp(-x)) - 1/x) ) dx (see Gugger or Monier). - Bernard Schott, Nov 21 2021
Equals 1/2 + Limit_{s->1} (Zeta(s) + Zeta(1/s))/2. - Thomas Ordowski, Jan 12 2023
Equals Sum_{j>=2} Sum_{k>=2} ((k-1)/(k*j^k)). - Mike Tryczak, Apr 06 2023
From Stefano Spezia, Oct 27 2024: (Start)
Equals Sum_{n>=1} n*(zeta(n+1) - 1)/(n + 1) [Euler] (see Finch at p. 30).
Equals lim_{n->oo} Sum_{prime p<=n} log(p/(p - 1)) - log(log(n)) (see Finch at p. 31). (End)
Equals lim_{s->1} zeta(s) - zeta(s)^2/zeta(2*s - 1)/2. - Mats Granvik, Jul 07 2025

A036987 Fredholm-Rueppel sequence.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Binary representation of the Kempner-Mahler number Sum_{k>=0} 1/2^(2^k) = A007404.
a(n) = (product of digits of n; n in binary notation) mod 2. This sequence is a transformation of the Thue-Morse sequence (A010060), since there exists a function f such that f(sum of digits of n) = (product of digits of n). - Ctibor O. Zizka, Feb 12 2008
a(n-1), n >= 1, the characteristic sequence for powers of 2, A000079, is the unique solution of the following formal product and formal power series identity: Product_{j>=1} (1 + a(j-1)*x^j) = 1 + Sum_{k>=1} x^k = 1/(1-x). The product is therefore Product_{l>=1} (1 + x^(2^l)). Proof. Compare coefficients of x^n and use the binary representation of n. Uniqueness follows from the recurrence relation given for the general case under A147542. - Wolfdieter Lang, Mar 05 2009
a(n) is also the number of orbits of length n for the map x -> 1-cx^2 on [-1,1] at the Feigenbaum critical value c=1.401155... . - Thomas Ward, Apr 08 2009
A054525 (Mobius transform) * A001511 = A036987 = A047999^(-1) * A001511 = the inverse of Sierpiński's gasket * the ruler sequence. - Gary W. Adamson, Oct 26 2009 [Of course this is only vaguely correct depending on how the fuzzy indexing in these formulas is made concrete. - R. J. Mathar, Jun 20 2014]
Characteristic function of A000225. - Reinhard Zumkeller, Mar 06 2012
Also parity of the Catalan numbers A000108. - Omar E. Pol, Jan 17 2012
For n >= 2, also the largest exponent k >= 0 such that n^k in binary notation does not contain both 0 and 1. Unlike for the decimal version of this sequence, A062518, where the terms are only conjectural, for this sequence the values of a(n) can be proved to be the characteristic function of A000225, as follows: n^k will contain both 0 and 1 unless n^k = 2^r-1 for some r. But this is a special case of Catalan's equation x^p = y^q-1, which was proved by Preda Mihăilescu to have no nontrivial solution except 2^3 = 3^2 - 1. - Christopher J. Smyth, Aug 22 2014
Image, under the coding a,b -> 1; c -> 0, of the fixed point, starting with a, of the morphism a -> ab, b -> cb, c -> cc. - Jeffrey Shallit, May 14 2016
Number of nonisomorphic Boolean algebras of order n+1. - Jianing Song, Jan 23 2020

Examples

			G.f. = 1 + x + x^3 + x^7 + x^15 + x^31 + x^63 + x^127 + x^255 + x^511 + ...
a(7) = 1 since 7 = 2^3 - 1, while a(10) = 0 since 10 is not of the form 2^k - 1 for any integer k.
		

Crossrefs

The first row of A073346. Occurs for first time in A073202 as row 6 (and again as row 8).
Congruent to any of the sequences A000108, A007460, A007461, A007463, A007464, A061922, A068068 reduced modulo 2. Characteristic function of A000225.
If interpreted with offset=1 instead of 0 (i.e., a(1)=1, a(2)=1, a(3)=0, a(4)=1, ...) then this is the characteristic function of 2^n (A000079) and as such occurs as the first row of A073265. Also, in that case the INVERT transform will produce A023359.
This is Guy Steele's sequence GS(1, 3), also GS(3, 1) (see A135416).
Cf. A054525, A047999. - Gary W. Adamson, Oct 26 2009

Programs

  • Haskell
    a036987 n = ibp (n+1) where
       ibp 1 = 1
       ibp n = if r > 0 then 0 else ibp n' where (n',r) = divMod n 2
    a036987_list = 1 : f [0,1] where f (x:y:xs) = y : f (x:xs ++ [x,x+y])
    -- Same list generator function as for a091090_list, cf. A091090.
    -- Reinhard Zumkeller, May 19 2015, Apr 13 2013, Mar 13 2013
    
  • Maple
    A036987:= n-> `if`(2^ilog2(n+1) = n+1, 1, 0):
    seq(A036987(n), n=0..128);
  • Mathematica
    RealDigits[ N[ Sum[1/10^(2^n), {n, 0, Infinity}], 110]][[1]]
    (* Recurrence: *)
    t[n_, 1] = 1; t[1, k_] = 1;
    t[n_, k_] := t[n, k] =
      If[n < k, If[n > 1 && k > 1, -Sum[t[k - i, n], {i, 1, n - 1}], 0],
       If[n > 1 && k > 1, Sum[t[n - i, k], {i, 1, k - 1}], 0]];
    Table[t[n, k], {k, n, n}, {n, 104}]
    (* Mats Granvik, Jun 03 2011 *)
    mb2d[n_]:=1 - Module[{n2 = IntegerDigits[n, 2]}, Max[n2] - Min[n2]]; Array[mb2d, 120, 0] (* Vincenzo Librandi, Jul 19 2019 *)
    Table[PadRight[{1},2^k,0],{k,0,7}]//Flatten (* Harvey P. Dale, Apr 23 2022 *)
  • PARI
    {a(n) =( n++) == 2^valuation(n, 2)}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    a(n) = !bitand(n, n+1); \\ Ruud H.G. van Tol, Apr 05 2023
    
  • Python
    from sympy import catalan
    def a(n): return catalan(n)%2 # Indranil Ghosh, May 25 2017
    
  • Python
    def A036987(n): return int(not(n&(n+1))) # Chai Wah Wu, Jul 06 2022

Formula

1 followed by a string of 2^k - 1 0's. Also a(n)=1 iff n = 2^m - 1.
a(n) = a(floor(n/2)) * (n mod 2) for n>0 with a(0)=1. - Reinhard Zumkeller, Aug 02 2002 [Corrected by Mikhail Kurkov, Jul 16 2019]
Sum_{n>=0} 1/10^(2^n) = 0.110100010000000100000000000000010...
1 if n=0, floor(log_2(n+1)) - floor(log_2(n)) otherwise. G.f.: (1/x) * Sum_{k>=0} x^(2^k) = Sum_{k>=0} x^(2^k-1). - Ralf Stephan, Apr 28 2003
a(n) = 1 - A043545(n). - Michael Somos, Aug 25 2003
a(n) = -Sum_{d|n+1} mu(2*d). - Benoit Cloitre, Oct 24 2003
Dirichlet g.f. for right-shifted sequence: 2^(-s)/(1-2^(-s)).
a(n) = A000108(n) mod 2 = A001405(n) mod 2. - Paul Barry, Nov 22 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{j=0..k} binomial(k, 2^j-1). - Paul Barry, Jun 01 2006
A000523(n+1) = Sum_{k=1..n} a(k). - Mitch Harris, Jul 22 2011
a(n) = A209229(n+1). - Reinhard Zumkeller, Mar 07 2012
a(n) = Sum_{k=1..n} A191898(n,k)*cos(Pi*(n-1)*(k-1))/n; (conjecture). - Mats Granvik, Mar 04 2013
a(n) = A000035(A000108(n)). - Omar E. Pol, Aug 06 2013
a(n) = 1 iff n=2^k-1 for some k, 0 otherwise. - M. F. Hasler, Jun 20 2014
a(n) = ceiling(log_2(n+2)) - ceiling(log_2(n+1)). - Gionata Neri, Sep 06 2015
From John M. Campbell, Jul 21 2016: (Start)
a(n) = (A000168(n-1) mod 2).
a(n) = (A000531(n+1) mod 2).
a(n) = (A000699(n+1) mod 2).
a(n) = (A000891(n) mod 2).
a(n) = (A000913(n-1) mod 2), for n>1.
a(n) = (A000917(n-1) mod 2), for n>0.
a(n) = (A001142(n) mod 2).
a(n) = (A001246(n) mod 2).
a(n) = (A001246(n) mod 4).
a(n) = (A002057(n-2) mod 2), for n>1.
a(n) = (A002430(n+1) mod 2). (End)
a(n) = 2 - A043529(n). - Antti Karttunen, Nov 19 2017
a(n) = floor(1+log(n+1)/log(2)) - floor(log(2n+1)/log(2)). - Adriano Caroli, Sep 22 2019
This is also the decimal expansion of -Sum_{k>=1} mu(2*k)/(10^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

Extensions

Edited by M. F. Hasler, Jun 20 2014

A007404 Decimal expansion of Sum_{n>=0} 1/2^(2^n).

Original entry on oeis.org

8, 1, 6, 4, 2, 1, 5, 0, 9, 0, 2, 1, 8, 9, 3, 1, 4, 3, 7, 0, 8, 0, 7, 9, 7, 3, 7, 5, 3, 0, 5, 2, 5, 2, 2, 1, 7, 0, 3, 3, 1, 1, 3, 7, 5, 9, 2, 0, 5, 5, 2, 8, 0, 4, 3, 4, 1, 2, 1, 0, 9, 0, 3, 8, 4, 3, 0, 5, 5, 6, 1, 4, 1, 9, 4, 5, 5, 5, 3, 0, 0, 0, 6, 0, 4, 8, 5, 3, 1, 3, 2, 4, 8, 3, 9, 7, 2, 6, 5, 6, 1, 7, 5, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Kempner shows that numbers of a general form (which includes this constant) are transcendental. - Charles R Greathouse IV, Nov 07 2017

Examples

			0.81642150902189314370....
		

References

  • M. J. Knight, An "oceans of zeros" proof that a certain non-Liouville number is transcendental, The American Mathematical Monthly, Vol. 98, No. 10 (1991), pp. 947-949.

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/2^(2^n), {n, 0, Infinity}], 110]] [[1]]
  • PARI
    default(realprecision, 20080); x=suminf(n=0, 1/2^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b007404.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
    
  • PARI
    suminf(k = 0, 1/(2^(2^k))) \\ Michel Marcus, Mar 26 2017
    
  • PARI
    suminf(k=0,1.>>2^k) \\ Charles R Greathouse IV, Nov 07 2017

Formula

Equals -Sum_{k>=1} mu(2*k)/(2^k - 1) = Sum_{k>=1, k odd} mu(k)/(2^k - 1). - Amiram Eldar, Jun 22 2020

Extensions

Edited by Robert G. Wilson v, Dec 11 2002
Deleted old PARI program Harry J. Smith, May 20 2009

A078885 Decimal expansion of Sum {n>=0} 1/3^(2^n).

Original entry on oeis.org

4, 5, 6, 9, 4, 2, 5, 6, 2, 4, 7, 7, 6, 3, 9, 6, 6, 1, 1, 1, 5, 4, 9, 1, 8, 2, 6, 1, 6, 6, 9, 0, 3, 0, 3, 7, 9, 8, 9, 9, 4, 2, 5, 9, 9, 7, 1, 3, 8, 3, 1, 1, 9, 2, 0, 9, 1, 0, 5, 6, 8, 7, 4, 3, 0, 9, 9, 8, 2, 4, 1, 8, 2, 9, 9, 6, 9, 0, 0, 2, 9, 5, 1, 8, 8, 2, 5, 1, 5, 2, 6, 6, 8, 0, 6, 8, 7, 7, 5, 3, 3, 4, 5, 2, 5
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.456942562477639661115491826166903037989942599713831192091056874309982...
		

Crossrefs

Cf. A004200 (continued fraction), A011764.

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/3^(2^n), {n, 0, Infinity}], 110]] [[1]]
  • PARI
    default(realprecision, 20080); x=suminf(n=0, 1/3^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b078885.txt", n, " ", d)); \\ Harry J. Smith, May 10 2009

Formula

Equals -Sum_{k>=1} mu(2*k)/(3^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A078886 Decimal expansion of Sum {n>=0} 1/5^(2^n).

Original entry on oeis.org

2, 4, 1, 6, 0, 2, 5, 6, 0, 0, 0, 6, 5, 5, 3, 6, 0, 0, 0, 0, 0, 0, 4, 2, 9, 4, 9, 6, 7, 2, 9, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 4, 4, 6, 7, 4, 4, 0, 7, 3, 7, 0, 9, 5, 5, 1, 6, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 2, 8, 2, 3, 6, 6, 9, 2, 0, 9, 3, 8, 4
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Comments

Decimal expansion has increasingly large gaps of zeros, the digits delimited by these zeros are equal to 2^(2^m) as m=0,1,2,3,... The continued fraction expansion (A122165) and consists entirely of 3's, 5's and 7's, after an initial partial quotient of 4. - Paul D. Hanna, Aug 22 2006

Examples

			0.241602560006553600000...
From _Paul D. Hanna_, Aug 22 2006: (Start)
Decimal expansion consists of large gaps of zeros between strings of digits that form powers of 2; this can be seen by grouping the digits as follows:
x = .2 4 16 0 256 000 65536 000000 4294967296 000000000000 ...= 0.24160256000655360000004294...
and then recognizing the substrings as powers of 2:
2 = 2^(2^0), 4 = 2^(2^1), 16 = 2^(2^2), 65536 = 2^(2^4), 4294967296 = 2^(2^5), 18446744073709551616 = 2^(2^6), ... (End)
		

Crossrefs

Cf. A122165 (continued fraction), A176594.

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/5^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    {a(n)=local(x=sum(k=0,ceil(3+log(n+1)),1/5^(2^k)));(floor(10^n*x))%10} \\ Paul D. Hanna, Aug 22 2006

Formula

Equals -Sum_{k>=1} mu(2*k)/(5^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

Extensions

Edited by R. J. Mathar, Aug 02 2008

A078887 Decimal expansion of Sum {n>=0} 1/6^(2^n).

Original entry on oeis.org

1, 9, 5, 2, 1, 6, 6, 4, 4, 7, 5, 7, 2, 5, 1, 2, 8, 4, 9, 2, 5, 1, 0, 5, 1, 0, 6, 3, 5, 1, 5, 2, 1, 9, 4, 8, 4, 3, 2, 2, 4, 3, 4, 6, 8, 9, 9, 3, 2, 0, 3, 7, 2, 9, 8, 0, 7, 9, 2, 3, 1, 7, 4, 2, 6, 7, 3, 0, 3, 5, 8, 8, 3, 7, 2, 1, 2, 7, 6, 9, 0, 9, 0, 0, 4, 8, 7, 8, 5, 6, 1, 4, 9, 1, 6, 2, 4, 4, 6, 3, 1, 3, 6, 2, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.195216644757251284925...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/6^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/6^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals -Sum_{k>=1} mu(2*k)/(6^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A078888 Decimal expansion of Sum {n>=0} 1/7^(2^n).

Original entry on oeis.org

1, 6, 3, 6, 8, 1, 9, 7, 2, 7, 1, 6, 8, 6, 8, 0, 1, 7, 9, 1, 1, 7, 2, 9, 7, 2, 5, 8, 9, 3, 9, 0, 9, 2, 0, 0, 6, 0, 5, 2, 4, 4, 8, 5, 4, 1, 5, 9, 3, 3, 6, 8, 2, 5, 3, 2, 7, 8, 6, 2, 2, 1, 0, 3, 5, 9, 7, 2, 5, 1, 1, 8, 5, 9, 2, 9, 2, 3, 5, 7, 5, 0, 2, 5, 1, 1, 7, 3, 9, 7, 8, 4, 0, 1, 2, 7, 2, 9, 4, 3, 8, 1, 8, 4, 7
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.163681972716868017911...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/7^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/7^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals -Sum_{k>=1} mu(2*k)/(7^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A078889 Decimal expansion of Sum {n>=0} 1/8^(2^n).

Original entry on oeis.org

1, 4, 0, 8, 6, 9, 2, 0, 0, 2, 2, 9, 6, 4, 8, 3, 2, 8, 1, 0, 4, 3, 0, 3, 8, 0, 0, 5, 1, 3, 5, 5, 1, 1, 3, 0, 1, 0, 4, 8, 7, 4, 0, 7, 9, 5, 1, 1, 5, 8, 7, 6, 5, 7, 0, 4, 4, 6, 8, 3, 8, 8, 8, 8, 6, 5, 8, 8, 4, 5, 4, 8, 1, 8, 9, 4, 4, 7, 2, 5, 6, 1, 1, 6, 1, 0, 1, 2, 3, 4, 0, 7, 1, 1, 8, 4, 1, 1, 0, 4, 5, 5, 5, 1, 9
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.140869200229648328104...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/8^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/8^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals -Sum_{k>=1} mu(2*k)/(8^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A078890 Decimal expansion of Sum {n>=0} 1/9^(2^n).

Original entry on oeis.org

1, 2, 3, 6, 0, 9, 2, 2, 9, 1, 4, 4, 3, 0, 6, 3, 2, 7, 7, 8, 2, 1, 5, 8, 4, 9, 2, 8, 3, 3, 5, 6, 9, 7, 0, 4, 6, 5, 6, 6, 0, 9, 2, 6, 6, 3, 8, 0, 4, 9, 7, 8, 5, 8, 7, 5, 7, 7, 2, 3, 5, 4, 0, 9, 7, 6, 6, 4, 9, 0, 8, 4, 9, 6, 6, 3, 5, 6, 6, 9, 6, 1, 8, 5, 4, 9, 1, 8, 1, 9, 3, 3, 4, 7, 3, 5, 4, 4, 2, 0, 0, 1, 1, 9, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.123609229144306327782...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/9^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/9^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals A078885 - 1/3 = A078885 - A010701. - R. J. Mathar, Apr 23 2009
Equals -Sum_{k>=1} mu(2*k)/(9^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A076214 Decimal expansion of C = Sum_{k>=0} 1/2^(2^k-1).

Original entry on oeis.org

1, 6, 3, 2, 8, 4, 3, 0, 1, 8, 0, 4, 3, 7, 8, 6, 2, 8, 7, 4, 1, 6, 1, 5, 9, 4, 7, 5, 0, 6, 1, 0, 5, 0, 4, 4, 3, 4, 0, 6, 6, 2, 2, 7, 5, 1, 8, 4, 1, 1, 0, 5, 6, 0, 8, 6, 8, 2, 4, 2, 1, 8, 0, 7, 6, 8, 6, 1, 1, 1, 2, 2, 8, 3, 8, 9, 1, 1, 0, 6, 0, 0, 1, 2, 0, 9, 7, 0, 6, 2, 6, 4, 9, 6, 7, 9, 4, 5, 3, 1, 2, 3, 5, 1, 1
Offset: 1

Views

Author

Benoit Cloitre, Nov 03 2002

Keywords

Comments

This constant has a nice continued fraction expansion (i.e. only 1 and 2 occur). C arises when looking for a sequence b(n) such that : b(1) = 0, b(n+1) is the smallest integer > b(n) such that the continued fraction for 1/2^b(1) + 1/2^b(2) + ... + 1/2^b(n+1) contains only 1's or 2's. Because b(n) = 2^n-1 and C = Sum_{k>=0} 1/2^b(k).

Examples

			1.632843018043786287416159475061050443406622751841105608682421807686111...
		

Crossrefs

Cf. A006466 (continued fraction), A007404, A078585.

Programs

  • Mathematica
    Take[ RealDigits[ 2*NSum[1/2^2^k, {k, 0, Infinity}, WorkingPrecision -> 120]][[1]], 105] (* Jean-François Alcover, Nov 15 2011 *)
  • PARI
    default(realprecision, 20080); x=suminf(k=0, 1/2^(2^k)); x*=2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b076214.txt", n, " ", d)); \\ Harry J. Smith, May 09 2009

Formula

Equals 2 * Sum_{k>=0} 1/2^(2^k) = 2 * A007404. - Harry J. Smith, May 09 2009
From Amiram Eldar, Mar 12 2024: (Start)
Equals 1 + 2 * A078585.
Equals 1 + Sum_{k>=1} floor(log_2(k))/2^k (Shamos, 2011, p. 8). (End)
Showing 1-10 of 11 results. Next