cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1287 results. Next

A097663 Decimal expansion of the constant 3*exp(psi(1/3) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

2, 3, 3, 1, 1, 9, 0, 9, 3, 1, 8, 4, 5, 6, 4, 1, 1, 7, 3, 0, 5, 3, 7, 5, 6, 2, 3, 2, 6, 5, 4, 4, 2, 8, 9, 5, 7, 4, 4, 6, 0, 8, 5, 8, 7, 0, 2, 5, 9, 2, 4, 5, 6, 4, 1, 4, 0, 9, 6, 0, 0, 7, 8, 7, 5, 6, 1, 6, 8, 2, 8, 5, 3, 1, 1, 5, 3, 1, 7, 4, 6, 3, 3, 5, 1, 1, 2, 2, 5, 5, 6, 6, 9, 4, 0, 6, 7, 7, 7, 0, 3, 3, 8, 9, 8
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-3 linear recursions with varying coefficients (see A097677 for example).

Examples

			0.23311909318456411730537562326544289574460858702592456414096...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(-Pi(R)/Sqrt(12))/Sqrt(3); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[1/Sqrt[3]*E^(-Pi/Sqrt[12]), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    3*exp(psi(1/3)+Euler)
    

Formula

Equals exp(-Pi/sqrt(12))/sqrt(3).

Extensions

More terms from Robert G. Wilson v, Aug 28 2004
Offset corrected by R. J. Mathar, Feb 05 2009

A097676 Decimal expansion of the constant 8*exp(psi(7/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

6, 3, 7, 6, 6, 3, 2, 4, 8, 9, 4, 1, 6, 6, 7, 7, 8, 5, 5, 0, 0, 1, 7, 6, 2, 5, 9, 3, 8, 2, 5, 1, 0, 7, 9, 0, 6, 2, 6, 7, 4, 3, 5, 3, 2, 6, 7, 8, 6, 4, 6, 2, 1, 6, 7, 6, 7, 3, 0, 6, 4, 1, 0, 7, 4, 3, 4, 2, 6, 4, 5, 4, 9, 1, 5, 2, 5, 9, 9, 9, 3, 9, 0, 8, 8, 3, 3, 7, 3, 3, 1, 6, 4, 3, 8, 3, 2, 7, 6, 5, 5, 5, 3, 4, 9
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-8 linear recursions with varying coefficients (see A097682 for example).

Examples

			c = 6.37663248941667785500176259382510790626743532678646216767306...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField();
    (1+Sqrt(2))^(-Sqrt(2))/2*Exp(Pi(R)/2*(1+Sqrt(2))); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[(1 + Sqrt[2])^(-Sqrt[2])/2E^(Pi/2*(1 + Sqrt[2])), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    8*exp(psi(7/8)+Euler)
    

Formula

c = (1+sqrt(2))^(-sqrt(2))/2*exp(Pi/2*(1+sqrt(2))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A195189 Denominators of a sequence leading to gamma = A001620.

Original entry on oeis.org

2, 24, 72, 2880, 800, 362880, 169344, 29030400, 9331200, 4790016000, 8673280, 31384184832000, 6181733376000, 439378587648000, 10346434560000, 512189896458240000, 265423814656, 14148260909088768000, 2076423318208512000, 96342919523794944000000, 74538995631567667200000
Offset: 0

Views

Author

Paul Curtz, Sep 11 2011

Keywords

Comments

gamma = 1/2 + 1/24 + 1/72 + 19/2880 + 3/800 + 863/362880 + 275/169344 + ... = (A002206 unsigned=reduced A141417(n+1)/A091137(n+1))/a(n) is an old formula based on Gregory's A002206/A002207.
This formula for Euler's constant was discovered circa 1780-1790 by the Italian mathematicians Gregorio Fontana (1735-1803) and Lorenzo Mascheroni (1750-1800), and was subsequently rediscovered several times (in particular, by Ernst Schröder in 1879, Niels E. Nørlund in 1923, Jan C. Kluyver in 1924, Charles Jordan in 1929, Kenter in 1999, and Victor Kowalenko in 2008). For more details, see references below. - Iaroslav V. Blagouchine, May 03 2015

Examples

			a(0)=1*2, a(1)=2*12, a(2)=3*24, a(3)=4*720.
		

Crossrefs

Programs

  • Mathematica
    g[n_]:=Sum[StirlingS1[n,l]/(l+1),{l,1,n}]/(n*n!); a[n_]:=Denominator[g[n]]; Table[a[n],{n,1,30}] (* Iaroslav V. Blagouchine, May 03 2015 *)
    g[n_] := Sum[ BernoulliB[j]/j * StirlingS1[n, j-1], {j, 1, n+1}] / n! ; a[n_] := (n+1)*Denominator[g[n]]; Table[a[n], {n, 0, 20}]
    (* or *) max = 20; Denominator[ CoefficientList[ Series[ 1/Log[1 + x] - 1/x, {x, 0, max}], x]]*Range[max+1] (* Jean-François Alcover, Sep 04 2013 *)

Formula

a(n) = (n+1) * A002207(n).

Extensions

More terms from Jean-François Alcover, Sep 04 2013

A058209 a(n) = floor( exp(gamma) n log log n ) - sigma(n), where gamma is Euler's constant (A001620) and sigma(n) is sum of divisors of n (A000203).

Original entry on oeis.org

-5, -4, -5, -2, -6, 0, -5, -1, -4, 5, -9, 7, 0, 2, -2, 13, -5, 16, -3, 9, 8, 22, -11, 21, 12, 17, 4, 32, -7, 36, 7, 25, 22, 31, -10, 46, 27, 34, 2, 53, 2, 57, 20, 29, 37, 64, -9, 61, 28, 52, 29, 76, 13, 63, 18, 61, 54, 87, -18, 91, 60, 55, 35, 81, 24, 103, 48, 81, 36, 111, -9, 115
Offset: 2

Views

Author

N. J. A. Sloane, Nov 30 2000

Keywords

Comments

Theorem (G. Robin): exp(gamma) n log log n - sigma(n) is positive for all n >= 5041 if and only if the Riemann Hypothesis is true.
Note that a(n) <= exp(gamma) n log log n - sigma(n) < a(n) + 1.

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.2.2.b.
  • G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.

Crossrefs

Programs

  • Maple
    with(numtheory); Digits := 100; g := evalf(gamma); [seq( floor(exp(g)*n*log(log(n)))-sigma[1](n), n=2..80)];
  • Mathematica
    a[n_] := Floor[Exp[EulerGamma] n*Log[Log[n]]] - DivisorSigma[1, n]; Array[a,100,2] (* Jean-François Alcover, May 04 2011 *)
  • PARI
    a(n)=floor( exp(Euler)*n*log(log(n)) - sigma(n)) \\ Charles R Greathouse IV, Feb 08 2017

Extensions

Statement of Robin's theorem corrected by Jonathan Sondow, May 30 2011

A198778 Primes from merging of 4 successive digits in decimal expansion of Euler-Mascheroni constant A001620.

Original entry on oeis.org

577, 421, 3359, 3593, 5939, 9923, 8677, 2677, 6709, 6947, 6329, 2917, 4951, 1447, 401, 4283, 2417, 6449, 5003, 3733, 3767, 7673, 9491, 2039, 853, 5323, 6211, 4793, 7937, 857, 7057, 29, 3547, 6043, 587, 6733, 7331, 3313, 1399, 7541, 5413, 4139, 8423, 4877, 503, 8431, 3109, 1093, 9973, 3613, 8893, 8933, 17, 7247
Offset: 1

Views

Author

Harvey P. Dale, Oct 29 2011

Keywords

Comments

In contrast to A104938, leading zeros are allowed here, which explains the terms having fewer than 4 digits; e.g., a(32)=29 comes from consecutive digits "...0029..." starting at the 268th decimal digit of gamma (if the initial "0." counts as the first digit). - M. F. Hasler, Oct 31 2011

Examples

			The first four decimal digits of gamma = 0.5772... form the prime 577=a(1).
		

Crossrefs

Programs

  • Maple
    Digits := 420 ;
    for sh from 3 do
            p := floor(gamma*10^sh) mod 10000 ;
            if isprime(p) then
                    printf("%d,",p);
            end if;
    end do: # R. J. Mathar, Oct 31 2011
  • Mathematica
    (* see A104938 for Mmca code *)
    Join[{577},Select[FromDigits/@Partition[RealDigits[EulerGamma,10,1000][[1]],4,1],PrimeQ]] (* Harvey P. Dale, May 07 2019 *)
  • PARI
    L=10^4;for(i=3,999,isprime(p=Euler\.1^i%L)&print1(p",")) \\ M. F. Hasler, Oct 31 2011

A002389 Decimal expansion of -log(gamma), where gamma is Euler's constant A001620.

Original entry on oeis.org

5, 4, 9, 5, 3, 9, 3, 1, 2, 9, 8, 1, 6, 4, 4, 8, 2, 2, 3, 3, 7, 6, 6, 1, 7, 6, 8, 8, 0, 2, 9, 0, 7, 7, 8, 8, 3, 3, 0, 6, 9, 8, 9, 8, 1, 2, 6, 3, 0, 6, 4, 7, 9, 1, 0, 9, 0, 1, 5, 1, 3, 0, 4, 5, 7, 6, 6, 3, 1, 4, 2, 0, 0, 5, 5, 7, 5, 3, 0, 4, 7, 5, 6, 2, 6, 1, 8
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Aug 24 2025: (Start)
By definition, the Euler-Mascheroni constant gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*log(s(n+k)). Then it appears that E(n) converges rapidly to log(gamma). For example, E(50) = -0.549539312981644822337661768802(88...) gives log(gamma) correct to 30 decimal digits. Cf. A073004. (End)

Examples

			.549539312981644822337661768802907788330698981263...
		

References

  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -Log(EulerGamma(R)); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[-Log[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Sep 07 2018 *)
  • PARI
    -log(Euler) \\ Michel Marcus, Mar 11 2013
    

A097665 Decimal expansion of the constant 4*exp(psi(1/4) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

1, 0, 3, 9, 3, 9, 7, 8, 8, 1, 7, 5, 3, 8, 0, 9, 5, 4, 2, 7, 3, 4, 7, 7, 8, 0, 9, 9, 1, 7, 4, 8, 9, 3, 8, 5, 0, 1, 6, 9, 3, 8, 9, 2, 0, 8, 1, 5, 8, 8, 4, 8, 0, 4, 0, 3, 7, 5, 6, 7, 9, 4, 1, 5, 2, 7, 7, 0, 9, 9, 3, 8, 6, 4, 2, 7, 4, 1, 0, 6, 9, 8, 9, 4, 3, 0, 0, 1, 3, 8, 9, 3, 2, 7, 1, 3, 0, 1, 7, 6, 7, 0, 2, 6, 0
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-4 linear recursions with varying coefficients (see A097679 for example).

Examples

			c = 0.10393978817538095427347780991748938501693892081588480403756...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/2*E^(-Pi/2), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    4*exp(psi(1/4)+Euler)

Formula

c = 1/2*exp(-Pi/2).

Extensions

More terms from Robert G. Wilson v, Aug 28 2004

A038128 Beatty sequence for Euler's constant (A001620).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40, 41, 42, 42, 43
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [Floor((n*EulerGamma(RealField(100)))) : n in [0..100]]; // Vincenzo Librandi, Aug 15 2015
    
  • Mathematica
    Table[Floor[n*EulerGamma], {n, 0, 100}]
  • PARI
    a(n) = floor(n*Euler); \\ Michel Marcus, Oct 24 2015

Formula

a(n) = floor(n*0.5772156649...). - Typo fixed by Karl V. Keller, Jr., Jul 27 2015

Extensions

More terms from Leah Frazee (s1166278(AT)Cedarville.edu)
a(0) term added by T. D. Noe, Mar 27 2011

A058210 a(n) = floor( exp(gamma) n log log n ), where gamma is Euler's constant (A001620).

Original entry on oeis.org

-2, 0, 2, 4, 6, 8, 10, 12, 14, 17, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 76, 79, 81, 84, 87, 90, 92, 95, 98, 101, 104, 107, 109, 112, 115, 118, 121, 124, 127, 130, 133, 135, 138, 141, 144, 147, 150
Offset: 2

Views

Author

N. J. A. Sloane, Nov 30 2000

Keywords

Comments

Theorem (G. Robin): exp(gamma) n log log n > sigma(n) for all n >= 5041 if and only if the Riemann Hypothesis is true.
Note that a(n) <= exp(gamma) n log log n < a(n) + 1.

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.2.2.b.
  • G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.

Crossrefs

See A058209.
Cf. A001620.

Programs

  • Maple
    a:= n-> floor(exp(gamma)*n*log(log(n))):
    seq(a(n), n=2..60);  # Alois P. Heinz, Oct 18 2022
  • Mathematica
    Table[Floor[Exp[EulerGamma]*n*Log[Log[n]]], {n,2,50}] (* G. C. Greubel, Dec 31 2016 *)

Extensions

Statement of Robin's theorem corrected by Jonathan Sondow, May 30 2011

A059555 Beatty sequence for 1 + gamma A001620.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 18, 20, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 45, 47, 48, 50, 52, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 70, 72, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 89, 91, 93, 94, 96, 97, 99, 100, 102, 104, 105, 107, 108
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Comments

Let r = gamma (the Euler constant, 0.5772...). When {k*r, k >= 1} is jointly ranked with the positive integers, A059555(n) is the position of n and A059556(n) is the position of n*r. - Clark Kimberling, Oct 21 2014

Crossrefs

Beatty complement is A059556.

Programs

  • Magma
    R:=RealField(100); [Floor((1+EulerGamma(R))*n): n in [1..100]]; // G. C. Greubel, Aug 27 2018
  • Maple
    A001620 := proc(n)
            floor((1+gamma)*n) ;
    end proc:
    seq(A001620(n),n=1..50) ; # R. J. Mathar, Nov 11 2011
  • Mathematica
    t = N[Table[k*EulerGamma, {k, 1, 200}]]; u = Union[Range[200], t]
    Flatten[Table[Flatten[Position[u, n]], {n, 1, 100}]]  (* A059556 *)
    Flatten[Table[Flatten[Position[u, t[[n]]]], {n, 1, 100}]] (* A059555 *)
    (* Clark Kimberling, Oct 21 2014 *)
  • PARI
    { default(realprecision, 100); b=1 + Euler; for (n = 1, 2000, write("b059555.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
    

Formula

a(n) = n + A038128(n).
Showing 1-10 of 1287 results. Next