cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A097663 Decimal expansion of the constant 3*exp(psi(1/3) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

2, 3, 3, 1, 1, 9, 0, 9, 3, 1, 8, 4, 5, 6, 4, 1, 1, 7, 3, 0, 5, 3, 7, 5, 6, 2, 3, 2, 6, 5, 4, 4, 2, 8, 9, 5, 7, 4, 4, 6, 0, 8, 5, 8, 7, 0, 2, 5, 9, 2, 4, 5, 6, 4, 1, 4, 0, 9, 6, 0, 0, 7, 8, 7, 5, 6, 1, 6, 8, 2, 8, 5, 3, 1, 1, 5, 3, 1, 7, 4, 6, 3, 3, 5, 1, 1, 2, 2, 5, 5, 6, 6, 9, 4, 0, 6, 7, 7, 7, 0, 3, 3, 8, 9, 8
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-3 linear recursions with varying coefficients (see A097677 for example).

Examples

			0.23311909318456411730537562326544289574460858702592456414096...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(-Pi(R)/Sqrt(12))/Sqrt(3); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[1/Sqrt[3]*E^(-Pi/Sqrt[12]), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    3*exp(psi(1/3)+Euler)
    

Formula

Equals exp(-Pi/sqrt(12))/sqrt(3).

Extensions

More terms from Robert G. Wilson v, Aug 28 2004
Offset corrected by R. J. Mathar, Feb 05 2009

A339135 Decimal expansion of J = 2*log(2)/3 - Re(Psi(1/2 + i*sqrt(3)/2)), where Psi is the digamma function and i=sqrt(-1).

Original entry on oeis.org

6, 7, 7, 0, 2, 4, 6, 7, 9, 1, 0, 2, 9, 9, 3, 3, 4, 7, 0, 1, 6, 2, 4, 8, 0, 5, 4, 3, 3, 3, 4, 2, 3, 6, 1, 9, 2, 5, 9, 6, 1, 4, 9, 4, 6, 0, 7, 8, 9, 4, 3, 9, 1, 7, 9, 2, 3, 9, 0, 9, 8, 7, 2, 6, 0, 0, 8, 9, 7, 7, 1, 2, 4, 2, 4, 5, 7, 6, 0, 4, 6, 5, 7, 8, 1, 5, 5, 6, 0, 5, 4, 3, 4, 9, 0, 2, 4, 1, 3, 4, 6, 3, 9, 7, 1, 2, 5, 9, 2
Offset: 0

Views

Author

Artur Jasinski, Nov 25 2020

Keywords

Comments

Generally in the literature there is no explicit formula for the real part of the function Psi(x + i*y) when y != 0.
Up to now there is no explicit formula expressing the constant J in terms of other mathematical constants.

Examples

			J = 0.677024679102993347...
		

Crossrefs

Programs

  • Maple
    evalf(1 + 2*log(2)/3 - Psi(0, 5/2 - sqrt(3)*I/2)/2 - Psi(0, 5/2 + sqrt(3)*I/2)/2, 100); # Vaclav Kotesovec, Nov 26 2020
  • Mathematica
    RealDigits[N[Re[2 Log[2]/3 - PolyGamma[0, 1/2 + I Sqrt[3]/2]], 110]][[1]]
    Chop[N[1 + 2*Log[2]/3 - PolyGamma[0, 5/2 - I*Sqrt[3]/2]/2 - PolyGamma[0, 5/2 + I*Sqrt[3]/2]/2, 120]] (* Vaclav Kotesovec, Nov 26 2020 *)
  • PARI
    2*log(2)/3 - real(psi(1/2 + I*sqrt(3)/2)) \\ Michel Marcus, Nov 25 2020

Formula

J = -log(2)/3 - (1/2)*Pi/cosh(Pi*sqrt(3)/2) - Re(Psi(1/4 + i*sqrt(3)/4)).
J = -log(2)/3 + (1/2)*Pi/cosh(Pi*sqrt(3)/2) - Re(Psi(3/4 + i*sqrt(3)/4)).
J = 3 + gamma + (2/3)*log(2) - (1/2)* sqrt(3)*Pi*tanh(Pi*sqrt(3)/2) - 3*(Sum_{n>=1} zeta(3*n)-1), where zeta is Riemann zeta function and gamma is Euler gamma constant see A001620.
J = -(1/2) + gamma + (2/3)*log(2) + (3/2)*(Sum_{n>=1} zeta(3*n+1)-1).
J = -1 + gamma + (2/3)*log(2) + (1/2)*sqrt(3)*Pi*tanh(Pi*sqrt(3)/2) - 3*(Sum_{n>=0} zeta(3*n+2)-1).
J = -(3/8) + gamma + (2/3)*log(2) + (3/2)*(Sum_{n>=1} zeta(6*n+1)-1).
J = 1/4 + gamma + (2/3)*log(2) - 3*(Sum_{n>=0} zeta(6*n+3)-1).
J = -(1/4) + gamma + (2/3)*log(2) - 3 (Sum_{n>=0} zeta(6*n+5)-1).
J = (11/12 - (1/4)*i*sqrt(3))*Psi(1/2 + i*sqrt(3)/2) + (-(5/4) + (1/4)*i*sqrt(3))*Psi(-(1/2) - i*sqrt(3)/2) + (-(17/24) + (1/8)*i*sqrt(3))* Psi(1/4 + i*sqrt(3)/4) + (3/8 - (1/8)*i*sqrt(3))*Psi(-(1/4) - i*sqrt(3)/4) + (-(17/24) + (1/8)*i*sqrt(3))*Psi(3/4 + i*sqrt(3)/4) + (3/8 - (1/8)*i*sqrt(3))*Psi(-(3/4) - i*sqrt(3)/4).
J = 2*log(2)/3 - Integral_{t=0..infinity} cosh(t)/t - sinh(t)/t - (cos(sqrt(3)*t)*cosh(t/2))/(1 - cosh(t) + sinh(t)) + (cos(sqrt(3)*t)*sinh(t/2))/(1 - cosh(t) + sinh(t)).
J = gamma + (1/6)*Sum_{t>=1} (6*t^3-4*t^2-4*t-1)/(t*(t+1)*(2t+1)*(t^2+t+1)).
Equals 1 + 2*log(2)/3 - Psi(0, 5/2 - i*sqrt(3)/2)/2 - Psi(0, 5/2 + i*sqrt(3)/2)/2. - Vaclav Kotesovec, Nov 26 2020

A097665 Decimal expansion of the constant 4*exp(psi(1/4) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

1, 0, 3, 9, 3, 9, 7, 8, 8, 1, 7, 5, 3, 8, 0, 9, 5, 4, 2, 7, 3, 4, 7, 7, 8, 0, 9, 9, 1, 7, 4, 8, 9, 3, 8, 5, 0, 1, 6, 9, 3, 8, 9, 2, 0, 8, 1, 5, 8, 8, 4, 8, 0, 4, 0, 3, 7, 5, 6, 7, 9, 4, 1, 5, 2, 7, 7, 0, 9, 9, 3, 8, 6, 4, 2, 7, 4, 1, 0, 6, 9, 8, 9, 4, 3, 0, 0, 1, 3, 8, 9, 3, 2, 7, 1, 3, 0, 1, 7, 6, 7, 0, 2, 6, 0
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-4 linear recursions with varying coefficients (see A097679 for example).

Examples

			c = 0.10393978817538095427347780991748938501693892081588480403756...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/2*E^(-Pi/2), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    4*exp(psi(1/4)+Euler)

Formula

c = 1/2*exp(-Pi/2).

Extensions

More terms from Robert G. Wilson v, Aug 28 2004

A097664 Decimal expansion of the constant 3*exp(psi(2/3) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

1, 4, 2, 9, 8, 8, 4, 3, 0, 8, 4, 0, 1, 2, 3, 4, 2, 0, 5, 6, 6, 1, 7, 9, 0, 4, 2, 4, 7, 7, 5, 1, 3, 8, 0, 9, 6, 5, 6, 4, 9, 8, 2, 3, 6, 7, 6, 7, 5, 6, 4, 4, 6, 4, 8, 8, 7, 6, 3, 4, 6, 2, 1, 4, 8, 8, 3, 6, 9, 9, 4, 5, 0, 9, 1, 2, 2, 0, 3, 9, 6, 1, 6, 1, 8, 2, 1, 9, 5, 9, 1, 4, 6, 9, 0, 1, 8, 4, 6, 3, 6, 2, 3, 7, 8
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-3 linear recursions with varying coefficients (see A097678 for example).

Examples

			c = 1.42988430840123420566179042477513809656498236767564464887634...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1/Sqrt(3))*Exp(Pi(R)/Sqrt(12)); // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[1/Sqrt[3]*E^(Pi/Sqrt[12]), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    3*exp(psi(2/3)+Euler)
    

Formula

c = 1/sqrt(3)*exp(Pi/sqrt(12)).

Extensions

More terms from Robert G. Wilson v, Aug 28 2004

A097666 Decimal expansion of the constant 4*exp(psi(3/4) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

2, 4, 0, 5, 2, 3, 8, 6, 9, 0, 4, 8, 2, 6, 7, 5, 8, 2, 7, 7, 3, 6, 5, 1, 7, 8, 3, 3, 3, 5, 1, 9, 1, 6, 5, 6, 3, 1, 9, 5, 0, 8, 5, 4, 3, 7, 3, 3, 2, 2, 6, 7, 4, 7, 0, 0, 1, 0, 4, 0, 7, 7, 4, 4, 6, 2, 1, 2, 7, 5, 9, 5, 2, 4, 4, 5, 7, 9, 1, 0, 6, 8, 3, 7, 4, 3, 5, 2, 3, 8, 3, 2, 9, 1, 9, 4, 1, 6, 7, 7, 3, 2, 8, 6, 4
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-4 linear recursions with varying coefficients (see A097679 for example).

Examples

			c = 2.40523869048267582773651783335191656319508543733226747001040...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(Pi(R)/2)/2; // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[1/2*E^(Pi/2), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    4*exp(psi(3/4)+Euler)
    

Formula

c = 1/2*exp(Pi/2).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097667 Decimal expansion of the constant 5*exp(psi(1/5) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

0, 4, 4, 9, 4, 1, 8, 2, 8, 7, 7, 9, 2, 0, 8, 8, 2, 0, 6, 0, 8, 4, 6, 7, 3, 9, 6, 4, 2, 7, 6, 6, 5, 2, 0, 3, 4, 0, 2, 3, 8, 5, 9, 4, 3, 7, 1, 0, 5, 9, 8, 6, 9, 8, 0, 5, 8, 6, 1, 6, 7, 2, 9, 6, 3, 2, 5, 8, 8, 5, 3, 0, 7, 8, 6, 1, 2, 5, 6, 2, 7, 4, 7, 6, 8, 5, 8, 5, 5, 0, 9, 5, 9, 6, 1, 7, 3, 8, 6, 8, 6, 0, 8, 4, 4
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 0.04494182877920882060846739642766520340238594371059869805861...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(-Sqrt[5]/2)/5^(1/4)*E^(-Pi/2*Sqrt[1 + 2/Sqrt[5]]), 10, 104][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
    Join[{0}, RealDigits[N[5*Exp[PolyGamma[1/5] + EulerGamma], 120], 10, 100][[1]]] (* G. C. Greubel, Dec 31 2016 *)
  • PARI
    5*exp(psi(1/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(-sqrt(5)/2)/5^(1/4)*exp(-Pi/2*sqrt(1+2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097671 Decimal expansion of the constant 6*exp(psi(1/6) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

0, 1, 9, 0, 0, 3, 1, 1, 4, 8, 9, 8, 1, 4, 0, 4, 4, 7, 6, 2, 0, 2, 9, 2, 0, 9, 4, 3, 2, 9, 7, 3, 4, 2, 7, 0, 0, 9, 4, 4, 6, 2, 7, 0, 1, 5, 0, 0, 3, 4, 1, 3, 7, 6, 0, 4, 2, 2, 4, 2, 5, 1, 8, 7, 4, 8, 0, 4, 2, 5, 7, 8, 9, 3, 1, 5, 4, 3, 2, 6, 4, 0, 5, 9, 3, 2, 3, 1, 8, 2, 4, 5, 1, 5, 4, 6, 3, 2, 4, 1, 8, 2, 6, 2, 4
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-6 linear recursions with varying coefficients (see A097681 for example).

Examples

			c = 0.01900311489814044762029209432973427009446270150034137604224...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Sqrt[12]*E^(-Pi/2Sqrt[3]), 10, 104][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    6*exp(psi(1/6)+Euler)

Formula

c = 1/sqrt(12)*exp(-Pi/2*sqrt(3)).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097673 Decimal expansion of the constant 8*exp(psi(1/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

0, 0, 3, 2, 4, 1, 1, 2, 2, 8, 3, 0, 0, 9, 6, 3, 0, 7, 3, 7, 4, 7, 5, 1, 1, 7, 1, 2, 1, 7, 9, 1, 9, 0, 1, 7, 0, 1, 0, 7, 3, 8, 4, 7, 9, 2, 2, 1, 5, 1, 0, 4, 0, 0, 6, 9, 2, 9, 9, 0, 5, 9, 2, 3, 0, 5, 1, 8, 5, 7, 1, 1, 0, 2, 1, 3, 7, 4, 1, 0, 1, 1, 3, 2, 7, 9, 8, 7, 0, 4, 4, 4, 3, 6, 4, 9, 4, 7, 3, 7, 7, 4, 7, 2, 2
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-8 linear recursions with varying coefficients (see A097682 for example).

Examples

			c = 0.00324112283009630737475117121791901701073847922151040069299...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2])^(-Sqrt[2])/2E^(-Pi/2*(1 + Sqrt[2])), 10, 103][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    8*exp(psi(1/8)+Euler)

Formula

c = (1+sqrt(2))^(-sqrt(2))/2*exp(-Pi/2*(1+sqrt(2))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097668 Decimal expansion of the constant 5*exp(psi(2/5)+EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

6, 8, 7, 4, 7, 4, 2, 0, 6, 9, 9, 0, 8, 0, 1, 9, 6, 0, 7, 0, 8, 1, 6, 4, 2, 2, 1, 3, 3, 3, 9, 8, 4, 7, 5, 4, 9, 9, 7, 7, 7, 3, 5, 3, 0, 7, 8, 3, 2, 0, 5, 9, 3, 2, 3, 7, 3, 2, 7, 7, 5, 7, 1, 6, 4, 9, 6, 1, 3, 3, 4, 7, 9, 6, 8, 5, 6, 6, 7, 4, 7, 1, 1, 0, 0, 0, 9, 9, 2, 6, 7, 4, 2, 8, 4, 8, 2, 0, 1, 6, 9, 7, 8, 0, 8
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 0.68747420699080196070816422133398475499777353078320593237327...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(Sqrt[5]/2)/5^(1/4)*E^(-Pi/2Sqrt[1 - 2/Sqrt[5]]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    5*exp(psi(2/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(sqrt(5)/2)/5^(1/4)*exp(-Pi/2*sqrt(1-2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097669 Decimal expansion of the constant 5*exp(psi(3/5)+EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

1, 9, 0, 7, 9, 5, 9, 5, 3, 2, 5, 4, 3, 5, 4, 2, 5, 2, 2, 5, 5, 3, 3, 3, 8, 1, 3, 9, 7, 2, 9, 5, 2, 0, 3, 6, 9, 0, 8, 5, 1, 6, 0, 6, 8, 3, 5, 9, 0, 8, 2, 9, 6, 8, 2, 2, 8, 2, 2, 3, 5, 9, 6, 0, 8, 1, 0, 7, 0, 6, 3, 7, 8, 6, 8, 8, 6, 5, 5, 0, 4, 0, 3, 9, 9, 7, 2, 3, 6, 3, 5, 8, 3, 0, 9, 0, 1, 3, 8, 0, 7, 5, 3, 9, 0
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 1.90795953254354252255333813972952036908516068359082968228223...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(Sqrt[5]/2)/5^(1/4)*E^(Pi/2Sqrt[1 - 2/Sqrt[5]]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    5*exp(psi(3/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(sqrt(5)/2)/5^(1/4)*exp(Pi/2*sqrt(1-2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004
Showing 1-10 of 14 results. Next