cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097665 Decimal expansion of the constant 4*exp(psi(1/4) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

1, 0, 3, 9, 3, 9, 7, 8, 8, 1, 7, 5, 3, 8, 0, 9, 5, 4, 2, 7, 3, 4, 7, 7, 8, 0, 9, 9, 1, 7, 4, 8, 9, 3, 8, 5, 0, 1, 6, 9, 3, 8, 9, 2, 0, 8, 1, 5, 8, 8, 4, 8, 0, 4, 0, 3, 7, 5, 6, 7, 9, 4, 1, 5, 2, 7, 7, 0, 9, 9, 3, 8, 6, 4, 2, 7, 4, 1, 0, 6, 9, 8, 9, 4, 3, 0, 0, 1, 3, 8, 9, 3, 2, 7, 1, 3, 0, 1, 7, 6, 7, 0, 2, 6, 0
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-4 linear recursions with varying coefficients (see A097679 for example).

Examples

			c = 0.10393978817538095427347780991748938501693892081588480403756...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/2*E^(-Pi/2), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    4*exp(psi(1/4)+Euler)

Formula

c = 1/2*exp(-Pi/2).

Extensions

More terms from Robert G. Wilson v, Aug 28 2004

A097667 Decimal expansion of the constant 5*exp(psi(1/5) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

0, 4, 4, 9, 4, 1, 8, 2, 8, 7, 7, 9, 2, 0, 8, 8, 2, 0, 6, 0, 8, 4, 6, 7, 3, 9, 6, 4, 2, 7, 6, 6, 5, 2, 0, 3, 4, 0, 2, 3, 8, 5, 9, 4, 3, 7, 1, 0, 5, 9, 8, 6, 9, 8, 0, 5, 8, 6, 1, 6, 7, 2, 9, 6, 3, 2, 5, 8, 8, 5, 3, 0, 7, 8, 6, 1, 2, 5, 6, 2, 7, 4, 7, 6, 8, 5, 8, 5, 5, 0, 9, 5, 9, 6, 1, 7, 3, 8, 6, 8, 6, 0, 8, 4, 4
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 0.04494182877920882060846739642766520340238594371059869805861...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(-Sqrt[5]/2)/5^(1/4)*E^(-Pi/2*Sqrt[1 + 2/Sqrt[5]]), 10, 104][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
    Join[{0}, RealDigits[N[5*Exp[PolyGamma[1/5] + EulerGamma], 120], 10, 100][[1]]] (* G. C. Greubel, Dec 31 2016 *)
  • PARI
    5*exp(psi(1/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(-sqrt(5)/2)/5^(1/4)*exp(-Pi/2*sqrt(1+2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A247718 Decimal expansion of Integral_{0..Pi/2} exp(t)*cos(t) dt.

Original entry on oeis.org

1, 9, 0, 5, 2, 3, 8, 6, 9, 0, 4, 8, 2, 6, 7, 5, 8, 2, 7, 7, 3, 6, 5, 1, 7, 8, 3, 3, 3, 5, 1, 9, 1, 6, 5, 6, 3, 1, 9, 5, 0, 8, 5, 4, 3, 7, 3, 3, 2, 2, 6, 7, 4, 7, 0, 0, 1, 0, 4, 0, 7, 7, 4, 4, 6, 2, 1, 2, 7, 5, 9, 5, 2, 4, 4, 5, 7, 9, 1, 0, 6, 8, 3, 7, 4, 3, 5, 2, 3, 8, 3, 2, 9, 1, 9, 4, 1, 6, 7, 7, 3, 2, 8, 6, 4
Offset: 1

Views

Author

Jean-François Alcover, Sep 23 2014

Keywords

Examples

			1.90523869048267582773651783335191656319508543733226747...
		

Crossrefs

Cf. A042972.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(Pi(R)/2) - 1)/2; // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[(Exp[Pi/2] - 1)/2, 10, 105] // First
  • PARI
    default(realprecision, 100); (exp(Pi/2) -1)/2 \\ G. C. Greubel, Sep 07 2018
    

Formula

Equals (A042972 - 1)/2 = A097666 -1/2, where A042972 is exp(Pi/2).
Showing 1-3 of 3 results.