cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A198161 Primes from merging of 10 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

4142135623, 8872420969, 9698078569, 7537694807, 7973799073, 7846210703, 2644121497, 9935831413, 6592750559, 7010955997, 1472851741, 5251407989, 2533965463, 5339654633, 6152583523, 1525835239, 3950547457, 5750287759, 5996172983, 4084988471, 6668713013
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 10 digits in length.

Crossrefs

For sqrt(2), see also A198162, A198163, A198164, A198165,A198166, A198167, A198168, A198169, A198161 (this sequence).
For the Golden Ratio, see A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.
For the Euler-Mascheroni constant gamma, see A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.

Programs

  • Mathematica
    With[{len=10},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
  • PARI
    A198161(n, x=sqrt(2), m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next; silent||print1(p", "); n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 02 2014

A198177 10-digit primes found in the decimal expansion of the Golden Ratio phi, in the order of occurrence.

Original entry on oeis.org

1772030917, 4189391137, 6222353693, 7931800607, 5959395829, 5829056383, 3832266131, 6131992829, 6892501711, 9250171169, 1043216269, 3136144381, 7587012203, 7954454749, 8509874339, 4487706647, 1240076521, 7780531531, 5315317141, 1704666599, 7046665991
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 10 digits in length.
The sequence A103752 has erroneously the same definition; the actual definition of the terms is unknown. - M. F. Hasler, Nov 01 2014

Crossrefs

Programs

  • Mathematica
    With[{len=10},Select[FromDigits/@Partition[RealDigits[GoldenRatio,10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
  • PARI
    default(realprecision,N=1000);m=10^10;phi=sqrt(5/4)+.5;for(k=9,N,isprime(phi\.1^k%m)||next;(p=phi\.1^k%m)>10^9&&print1(p",")) \\ M. F. Hasler, Oct 31 2014

A103808 Primes from merging of 6 successive digits in decimal expansion of the Golden Ratio; (1+sqrt(5))/2.

Original entry on oeis.org

339887, 458683, 638117, 628189, 902449, 418939, 189391, 386891, 235369, 693179, 607667, 595939, 613199, 171169, 631361, 497587, 864449, 987433, 544877, 647809, 217057, 705751, 427621, 410117, 666599, 979873, 731761, 874807, 530567, 228911
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 6 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=6},FromDigits/@Select[Partition[RealDigits[GoldenRatio,10, 1000][[1]],len,1],PrimeQ[FromDigits[#]] &&IntegerLength[ FromDigits[#]] ==len&]] (* Harvey P. Dale, Oct 23 2011 *)
  • PARI
    A103808(n,x=(sqrt(5)+1)/2, m=6,silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next;silent||print1(p", ");n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use, e.g., \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 22 2013

A104851 Primes from merging of 10 successive digits in decimal expansion of e.

Original entry on oeis.org

7427466391, 7413596629, 6059563073, 3490763233, 2988075319, 1573834187, 7021540891, 5408914993, 6480016847, 9920695517, 1838606261, 6062613313, 3845830007, 1692836819, 4425056953, 2505695369, 5490598793, 1782154249, 8215424999, 9229576351, 9519366803
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Scan decimal expansion of e from left to right, recording any 10-digit primes seen. - N. J. A. Sloane, Feb 05 2012
All the primes listed here must have 10 digits, i.e., "leading zeros are not allowed". Otherwise, one would also have some terms as 297606737 or 865746377 or 98793127 from A104850. - M. F. Hasler, Nov 01 2014
The original version read (1185790117, 1180978417, 1573834187, 1838606261, 1308008771, 1692836819, 1782154249, 1825288693, 1525971943, 1730123819, 1332069811, 1881593041, 1934580727, 1978623209, 1164218399, 1574862173, 1635834619, 1311914371, ...). These terms are obtained when using signed 32-bit integers, i.e., take the 10-digit numbers modulo 2^32, and select the primes between 10^9 and 2^31. - M. F. Hasler, Nov 01 2014

Crossrefs

Programs

  • Mathematica
    With[{de=FromDigits/@Partition[RealDigits[E,10,10000][[1]],10,1]}, Select[de,#>10^9&&PrimeQ[#]&]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    list_A104851(x=exp(1), m=10)=m=10^m; for(k=1, default(realprecision), isprime(p=x\.1^k%m)&&p*10>m&&print1(p", ")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

Extensions

Corrected by Harvey P. Dale, Feb 05 2012
Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A198174 Primes from merging of 10 successive digits in decimal expansion of Pi, in the order of appearance.

Original entry on oeis.org

5926535897, 4197169399, 1693993751, 7510582097, 4825342117, 5822317253, 2841027019, 8521105559, 8954930381, 4756482337, 2712019091, 5432664821, 3266482133, 6072602491, 5588174881, 8815209209, 6282925409, 2540917153, 5903600113, 8204665213, 3841469519
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 10 digits in length.
See A104830 for the variant without this restriction. - M. F. Hasler, Nov 01 2014

Crossrefs

Cf., for Pi: A198175, A198170, A104824, A104825, A104826, A198171, A198172, A198173, A198174 (this) and A104830 (a variant).
Cf., for the Golden Ratio: A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.
Cf., for the Euler-Mascheroni constant gamma: A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.

Programs

  • Mathematica
    With[{len=10},Select[FromDigits/@Partition[RealDigits[Pi,10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
  • PARI
    A198174(n, x=Pi, m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next; silent||print1(p", "); n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

A198776 Primes from merging of 2 successive digits in decimal expansion of Euler-Mascheroni constant.

Original entry on oeis.org

53, 2, 43, 31, 59, 59, 23, 59, 5, 67, 23, 67, 67, 67, 47, 29, 17, 67, 31, 47, 7, 5, 83, 41, 17, 73, 97, 23, 53, 53, 3, 37, 29, 37, 73, 37, 73, 37, 67, 73, 79, 59, 47, 73, 3, 67, 53, 23, 31, 17, 61, 11, 11, 19, 7, 79, 47, 79, 37, 5, 2, 29, 13, 47, 61, 2, 29
Offset: 1

Views

Author

Harvey P. Dale, Oct 29 2011

Keywords

Comments

Leading zeros are permitted, so some terms may be less than 2 digits in length.

Crossrefs

Programs

  • Mathematica
      egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]],len,1]},Select[egterms,PrimeQ[#]&]];egp[2]
    Select[FromDigits/@Partition[RealDigits[EulerGamma,10,500][[1]],2,1],PrimeQ] (* Harvey P. Dale, Mar 19 2020 *)

A198784 Primes from merging of 10 successive digits in decimal expansion of Euler-Mascheroni constant (in the order of appearance).

Original entry on oeis.org

7215664901, 1566490153, 3286060651, 6060651209, 9008240243, 4310421593, 2159335939, 9235988057, 8486772677, 8070824809, 2836224173, 3622417399, 3997644923, 33374293, 2582470949, 6008735203, 87352039, 3151776611, 5015079847, 7400299213, 3139925401, 3754139549
Offset: 1

Views

Author

Harvey P. Dale, Oct 29 2011

Keywords

Comments

Leading zeros are permitted, so some terms are less than 10 digits in length.
See A104944 for the variant where no leading zeros are allowed. - M. F. Hasler, Nov 01 2014

Crossrefs

For the Euler-Mascheroni constant, see also A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784 (this sequence) and A104944 (a variant).
For the Golden Ratio, see A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.

Programs

  • Mathematica
    egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]],len,1]},Select[egterms,PrimeQ[#]&]]; egp[10]
  • PARI
    list_A198784(x=Euler,m=10)=m=10^m;for(k=1,default(realprecision),isprime(p=x\.1^k%m)&&print1(p",")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

A198777 Primes from merging of 3 successive digits in decimal expansion of Euler-Mascheroni constant.

Original entry on oeis.org

577, 431, 421, 593, 359, 593, 359, 677, 677, 467, 709, 947, 467, 463, 631, 809, 401, 283, 241, 173, 739, 997, 449, 353, 3, 337, 293, 937, 373, 733, 337, 773, 673, 739, 709, 491, 853, 233, 331, 151, 661, 211, 199, 79, 479, 937, 857, 2, 29, 547, 29, 43, 421
Offset: 1

Views

Author

Harvey P. Dale, Oct 29 2011

Keywords

Comments

Leading zeros are permitted, so some terms are less than 3 digits in length.

Crossrefs

Programs

  • Mathematica
    egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]],len,1]},Select[egterms,PrimeQ[#]&]]; egp[3]

A104944 Primes from merging of 10 successive digits in decimal expansion of the Euler-Mascheroni constant.

Original entry on oeis.org

7215664901, 1566490153, 3286060651, 6060651209, 9008240243, 4310421593, 2159335939, 9235988057, 8486772677, 8070824809, 2836224173, 3622417399, 3997644923, 2582470949, 6008735203, 3151776611, 5015079847, 7400299213, 3139925401, 3754139549, 7984234877
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 10 digits in length. - Harvey P. Dale, Oct 30 2011
See A198784 for the variant without this restriction.-- The original version read (1566490153, 1290642131, 1386514643, 1851726733, 1383679133, 1706757499, 1072945781, 1015442651, 1403043203, 1100525291, 1332985747, 1866475913, 1834810931, 1887149587, 1197399197, 1956311131, 1449885007, 2137384231, ...). These terms are obtained when using signed 32-bit integers, i.e., take the 10-digit strings modulo 2^32, and select the primes between 10^9 and 2^31. - M. F. Hasler, Nov 01 2014

Crossrefs

Programs

  • Mathematica
    egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]],len,1]},Select[egterms,IntegerLength[#]==len&&PrimeQ[#]&]];egp[10] (* Harvey P. Dale, Oct 30 2011 *)
  • PARI
    list_A104944(x=Euler, m=10)=m=10^m; for(k=1, default(realprecision), isprime(p=x\.1^k%m)&&p*10>m&&print1(p", ")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

Extensions

Corrected and extended by Harvey P. Dale, Oct 30 2011

A105383 Primes between 10^9 and 2^31 obtained from merging 10 successive digits in the decimal expansion of zeta(2) = Pi^2/6, taken modulo 2^32.

Original entry on oeis.org

1902619757, 1896233719, 2025479923, 1979084773, 1834487573, 2069040007, 1357689757, 1422433483, 1421193281, 1865610371, 1664088953, 1716574481, 1524418627, 2018846497, 2028620161, 1384352219, 1828868887, 1485949159
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Apr 03 2005

Keywords

Comments

Erroneous version of A225143.
The author must have used signed 32-bit integers to store 10 successive digits of zeta(2). This is the sequence you get by taking the 10-digit numbers modulo 2^32 and then listing primes between 10^9 and 2^31 = 2147483648. - Jens Kruse Andersen, Sep 15 2014
In other words, primes p in (10^9, 2^31) such that either p, p + 2^32 or p + 2^32*2 is the concatenation of 10 successive digits in the decimal expansion of Pi^2/6. - Jianing Song, Mar 14 2021

Examples

			From _Jianing Song_, Mar 14 2021: (Start)
1902619757 is a term since 1902619757 + 2^32 = 6197587053 is the concatenation of A013661(92) to A013661(101).
1896233719 is a term since it is the concatenation of A013661(108) to A013661(117). (End)
		

Crossrefs

Cf. A013661 (decimal expansion of Pi^2/6).
Cf. A103752 (a similar erroneous version).
Cf. (for Pi) A198175, A198170, A104824, A104825, A104826, A198171, A198172, A198173, A198174 and A104830 (a variant).
Cf. (for the Golden Ratio) A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.
Cf., for the Euler-Mascheroni constant gamma: A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.

Programs

  • PARI
    A105383(n, x=Pi^2/6, m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m%2^32)&&p*10>m&&p<2^31)||next; silent||print1(p", "); n--||return(p))} \\  Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

Extensions

Definition updated by M. F. Hasler, Nov 01 2014
Showing 1-10 of 11 results. Next