cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A103808 Primes from merging of 6 successive digits in decimal expansion of the Golden Ratio; (1+sqrt(5))/2.

Original entry on oeis.org

339887, 458683, 638117, 628189, 902449, 418939, 189391, 386891, 235369, 693179, 607667, 595939, 613199, 171169, 631361, 497587, 864449, 987433, 544877, 647809, 217057, 705751, 427621, 410117, 666599, 979873, 731761, 874807, 530567, 228911
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 6 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=6},FromDigits/@Select[Partition[RealDigits[GoldenRatio,10, 1000][[1]],len,1],PrimeQ[FromDigits[#]] &&IntegerLength[ FromDigits[#]] ==len&]] (* Harvey P. Dale, Oct 23 2011 *)
  • PARI
    A103808(n,x=(sqrt(5)+1)/2, m=6,silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next;silent||print1(p", ");n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use, e.g., \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 22 2013

A198784 Primes from merging of 10 successive digits in decimal expansion of Euler-Mascheroni constant (in the order of appearance).

Original entry on oeis.org

7215664901, 1566490153, 3286060651, 6060651209, 9008240243, 4310421593, 2159335939, 9235988057, 8486772677, 8070824809, 2836224173, 3622417399, 3997644923, 33374293, 2582470949, 6008735203, 87352039, 3151776611, 5015079847, 7400299213, 3139925401, 3754139549
Offset: 1

Views

Author

Harvey P. Dale, Oct 29 2011

Keywords

Comments

Leading zeros are permitted, so some terms are less than 10 digits in length.
See A104944 for the variant where no leading zeros are allowed. - M. F. Hasler, Nov 01 2014

Crossrefs

For the Euler-Mascheroni constant, see also A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784 (this sequence) and A104944 (a variant).
For the Golden Ratio, see A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.

Programs

  • Mathematica
    egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]],len,1]},Select[egterms,PrimeQ[#]&]]; egp[10]
  • PARI
    list_A198784(x=Euler,m=10)=m=10^m;for(k=1,default(realprecision),isprime(p=x\.1^k%m)&&print1(p",")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014
Showing 1-2 of 2 results.