cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A073004 Decimal expansion of exp(gamma).

Original entry on oeis.org

1, 7, 8, 1, 0, 7, 2, 4, 1, 7, 9, 9, 0, 1, 9, 7, 9, 8, 5, 2, 3, 6, 5, 0, 4, 1, 0, 3, 1, 0, 7, 1, 7, 9, 5, 4, 9, 1, 6, 9, 6, 4, 5, 2, 1, 4, 3, 0, 3, 4, 3, 0, 2, 0, 5, 3, 5, 7, 6, 6, 5, 8, 7, 6, 5, 1, 2, 8, 4, 1, 0, 7, 6, 8, 1, 3, 5, 8, 8, 2, 9, 3, 7, 0, 7, 5, 7, 4, 2, 1, 6, 4, 8, 8, 4, 1, 8, 2, 8, 0, 3, 3, 4, 8, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

See references and additional links in A094644.
The Riemann hypothesis holds if and only if the inequality sigma(n)/(n*log(log(n))) < exp(gamma) is valid for all n >= 5041, (G. Robin, 1984). - Peter Luschny, Oct 18 2020
From Peter Bala, Aug 24 2025: (Start)
By definition, gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*exp(s(n+k)). Then it appears that E(n) converges rapidly to exp(gamma). For example, E(50) = 1.78107241799019798523650410310(43...) gives exp(gamma) correct to 29 decimal digits. Cf. A002389. (End)

Examples

			Exp(gamma) = 1.7810724179901979852365041031071795491696452143034302053...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.5.1 and 2.27.2, pp. 31, 187.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 166, 191, 208.

Crossrefs

Cf. A001620 (Euler-Mascheroni constant, gamma).
Cf. A001113, A002389, A067698, A080130, A091901, A094644 (continued fraction for exp(gamma)), A155969, A246499.

Programs

  • Magma
    R:=RealField(100); Exp(EulerGamma(R)); // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[ E^(EulerGamma), 10, 110] [[1]]
  • PARI
    exp(Euler)
    

Formula

By Mertens theorem, equals lim_{m->infinity}(1/log(prime(m))*Product_{k=1..m} 1/(1-1/prime(k))). - Stanislav Sykora, Nov 14 2014
Equals limsup_{n->oo} sigma(n)/(n*log(log(n))) (Gronwall, 1913). - Amiram Eldar, Nov 07 2020
Equals limsup_{n->oo} (Sum_{d|n} log(d)/d)/(log(log(n)))^2 (Erdős and Zaremba, 1973). - Amiram Eldar, Mar 03 2021
Equals Product_{k>=1} (1-1/(k+1))*exp(1/k). - Amiram Eldar, Mar 20 2022
Equals lim_{n->oo} n * Product_{prime p<=n} p^(1/(1-p)). - Thomas Ordowski, Jan 30 2023
Equals Product_{k>=1} (k/sqrt(2))^((-1)^k/(k*log(2))). - Antonio Graciá Llorente, Oct 11 2024
Equals lim_{n->oo} (1/log(n))*Product_{prime p<=n} p/(p - 1) [Mertens] (see Finch at p. 31). - Stefano Spezia, Oct 27 2024

A155969 Decimal expansion of the square of the Euler-Mascheroni constant.

Original entry on oeis.org

3, 3, 3, 1, 7, 7, 9, 2, 3, 8, 0, 7, 7, 1, 8, 6, 7, 4, 3, 1, 8, 3, 7, 6, 1, 3, 6, 3, 5, 5, 2, 4, 4, 2, 2, 6, 6, 5, 9, 4, 1, 7, 1, 4, 0, 2, 4, 9, 6, 2, 9, 7, 4, 3, 1, 5, 0, 8, 3, 3, 3, 3, 8, 0, 0, 2, 2, 6, 5, 7, 9, 3, 6, 9, 5, 7, 5, 6, 6, 6, 9, 6, 6, 1, 2, 6, 3, 2, 6, 8, 6, 3, 1, 7, 1, 5, 9, 7, 7, 3, 0, 3, 0, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 31 2009

Keywords

Comments

The Pierce expansion is 3, 2144, 2463, 5226, 17239, 51372, 287963, 387316, 3226210,...
From Peter Bala, Aug 24 2025: (Start)
By definition, the Euler-Mascheroni constant gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k)^2. Then it appears that E(n) converges rapidly to gamma^2. For example, E(50) = 0.33317792380771867431837613635524(22...) gives gamma^2 correct to 32 decimal digits. (End)

Examples

			0.3331779238077186743183761363552442...
		

Crossrefs

Programs

  • Maple
    evalf(gamma^2);
  • Mathematica
    RealDigits[N[EulerGamma^2, 100]][[1]] (* G. C. Greubel, Dec 26 2016 *)
  • PARI
    Euler^2 \\ G. C. Greubel, Dec 26 2016

Formula

Equals A001620^2.

A059560 Beatty sequence for 1 - 1/log(gamma).

Original entry on oeis.org

2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 31, 33, 36, 39, 42, 45, 47, 50, 53, 56, 59, 62, 64, 67, 70, 73, 76, 78, 81, 84, 87, 90, 93, 95, 98, 101, 104, 107, 109, 112, 115, 118, 121, 124, 126, 129, 132, 135, 138, 140, 143, 146, 149, 152, 155, 157, 160, 163, 166, 169, 172
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

References

  • Fraenkel, Aviezri S.; Levitt, Jonathan; Shimshoni, Michael; Characterization of the set of values f(n)=[n alpha], n=1,2,... Discrete Math.2 (1972), no.4,335-345.

Crossrefs

Beatty complement is A059559.

Programs

  • Maple
    seq( floor(n*(1-1/log(gamma))),n=0..100) ;
  • Mathematica
    Floor[Range[100]*(1 - 1/Log[EulerGamma])] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 + 1/log(1/Euler); for (n = 1, 2000, write("b059560.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1-1/log(gamma))). - Michel Marcus, Jan 05 2015

A182500 Decimal expansion of -log_Pi(gamma), where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

4, 8, 0, 0, 6, 0, 2, 4, 8, 0, 7, 6, 6, 7, 3, 1, 8, 3, 0, 5, 5, 7, 5, 5, 2, 2, 9, 0, 1, 8, 6, 6, 5, 7, 5, 5, 2, 5, 2, 2, 7, 8, 0, 6, 0, 3, 8, 8, 5, 3, 6, 6, 5, 6, 2, 9, 6, 7, 4, 8, 2, 1, 5, 3, 8, 8, 6, 7, 5, 1, 0, 4, 4, 2, 7, 7, 1, 9, 0, 9, 3, 2, 1, 9, 3, 7, 5, 3, 6, 2, 7, 3, 8, 9, 4, 6, 9, 5, 7, 2, 8, 3, 8, 8, 2
Offset: 0

Views

Author

Volker Werner, May 02 2012

Keywords

Examples

			0.48006024807667318305575522901866575525227806038853...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -Log(EulerGamma(R))/Log(Pi(R)); // G. C. Greubel, Sep 01 2018
  • Mathematica
    RealDigits[ N[Log[EulerGamma]/Log[Pi], 105]] [[1]]
  • PARI
    default(realprecision, 100); -log(Euler)/log(Pi) \\ G. C. Greubel, Sep 01 2018
    

Formula

Equals |A002389/A053510|.

A213440 Decimal expansion of 1 + log(gamma), where gamma is Euler's constant A001620.

Original entry on oeis.org

4, 5, 0, 4, 6, 0, 6, 8, 7, 0, 1, 8, 3, 5, 5, 1, 7, 7, 6, 6, 2, 3, 3, 8, 2, 3, 1, 1, 9, 7, 0, 9, 2, 2, 1, 1, 6, 6, 9, 3, 0, 1, 0, 1, 8, 7, 3, 6, 9, 3, 5, 2, 0, 8, 9, 0, 9, 8, 4, 8, 6, 9, 5, 4, 2, 3, 3, 6, 8, 5, 7, 9, 9, 4, 4, 2, 4, 6, 9, 5, 2, 4, 3, 7, 3, 8, 1, 0, 1, 0, 8, 8, 7, 2, 3, 8, 5, 9, 3, 1, 5, 8, 5, 3, 3, 0, 7, 2, 4, 2, 0, 8, 0, 9, 5, 9, 5, 0, 4, 4, 7, 3, 6, 8, 1, 4
Offset: 0

Views

Author

N. J. A. Sloane, Jun 11 2012

Keywords

Examples

			0.4504606870183551776623382311970922116693010187369352...
		

References

  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:= RealField(100); 1 + Log(EulerGamma(R)); // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[1 + Log[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Aug 27 2018 *)
  • PARI
    default(realprecision, 100); 1 + log(Euler) \\ G. C. Greubel, Aug 27 2018
    

A059192 Engel expansion of log(1/gamma) (where gamma is the Euler-Mascheroni constant A001620) = 0.549539...

Original entry on oeis.org

2, 11, 12, 13, 53, 348, 5263, 9960, 17040, 33193, 72960, 125350, 663179, 1096815, 3481893, 4802237, 7782503, 9659740, 279957736, 454935116, 460488754, 1710020367, 51367039980, 55286622194, 323648965384, 2061149370731
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A002389.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Log[1/EulerGamma], 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A182526 Decimal expansion of | log_gamma(e) |, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 8, 1, 9, 7, 0, 6, 0, 2, 7, 1, 7, 0, 8, 0, 0, 4, 7, 6, 3, 2, 9, 0, 6, 6, 0, 5, 7, 7, 5, 3, 9, 0, 6, 5, 4, 4, 5, 5, 9, 7, 4, 5, 4, 4, 9, 8, 1, 9, 0, 2, 9, 5, 2, 9, 0, 6, 0, 6, 8, 4, 3, 0, 0, 1, 9, 9, 6, 6, 6, 6, 4, 7, 6, 6, 7, 3, 1, 2, 8, 4, 3, 7, 8, 9, 3, 2, 0, 9, 1, 1, 3, 7, 2, 9, 6, 4, 4, 1, 9, 2, 7, 1, 2, 6
Offset: 1

Views

Author

Volker Werner, May 03 2012

Keywords

Comments

Reciprocal of A002389.

Examples

			1.81970602717080047632906605775390654455974544981902...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -1/Log(EulerGamma(R)); // G. C. Greubel, Sep 06 2018
  • Mathematica
    RealDigits[1/Log[EulerGamma], 10, 100][[1]]
  • PARI
    default(realprecision, 100); -1/log(Euler) \\ G. C. Greubel, Sep 06 2018
    

Formula

Equals 1/A002389.
Showing 1-7 of 7 results.