cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A073004 Decimal expansion of exp(gamma).

Original entry on oeis.org

1, 7, 8, 1, 0, 7, 2, 4, 1, 7, 9, 9, 0, 1, 9, 7, 9, 8, 5, 2, 3, 6, 5, 0, 4, 1, 0, 3, 1, 0, 7, 1, 7, 9, 5, 4, 9, 1, 6, 9, 6, 4, 5, 2, 1, 4, 3, 0, 3, 4, 3, 0, 2, 0, 5, 3, 5, 7, 6, 6, 5, 8, 7, 6, 5, 1, 2, 8, 4, 1, 0, 7, 6, 8, 1, 3, 5, 8, 8, 2, 9, 3, 7, 0, 7, 5, 7, 4, 2, 1, 6, 4, 8, 8, 4, 1, 8, 2, 8, 0, 3, 3, 4, 8, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

See references and additional links in A094644.
The Riemann hypothesis holds if and only if the inequality sigma(n)/(n*log(log(n))) < exp(gamma) is valid for all n >= 5041, (G. Robin, 1984). - Peter Luschny, Oct 18 2020
From Peter Bala, Aug 24 2025: (Start)
By definition, gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*exp(s(n+k)). Then it appears that E(n) converges rapidly to exp(gamma). For example, E(50) = 1.78107241799019798523650410310(43...) gives exp(gamma) correct to 29 decimal digits. Cf. A002389. (End)

Examples

			Exp(gamma) = 1.7810724179901979852365041031071795491696452143034302053...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.5.1 and 2.27.2, pp. 31, 187.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 166, 191, 208.

Crossrefs

Cf. A001620 (Euler-Mascheroni constant, gamma).
Cf. A001113, A002389, A067698, A080130, A091901, A094644 (continued fraction for exp(gamma)), A155969, A246499.

Programs

  • Magma
    R:=RealField(100); Exp(EulerGamma(R)); // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[ E^(EulerGamma), 10, 110] [[1]]
  • PARI
    exp(Euler)
    

Formula

By Mertens theorem, equals lim_{m->infinity}(1/log(prime(m))*Product_{k=1..m} 1/(1-1/prime(k))). - Stanislav Sykora, Nov 14 2014
Equals limsup_{n->oo} sigma(n)/(n*log(log(n))) (Gronwall, 1913). - Amiram Eldar, Nov 07 2020
Equals limsup_{n->oo} (Sum_{d|n} log(d)/d)/(log(log(n)))^2 (Erdős and Zaremba, 1973). - Amiram Eldar, Mar 03 2021
Equals Product_{k>=1} (1-1/(k+1))*exp(1/k). - Amiram Eldar, Mar 20 2022
Equals lim_{n->oo} n * Product_{prime p<=n} p^(1/(1-p)). - Thomas Ordowski, Jan 30 2023
Equals Product_{k>=1} (k/sqrt(2))^((-1)^k/(k*log(2))). - Antonio Graciá Llorente, Oct 11 2024
Equals lim_{n->oo} (1/log(n))*Product_{prime p<=n} p/(p - 1) [Mertens] (see Finch at p. 31). - Stefano Spezia, Oct 27 2024

A002389 Decimal expansion of -log(gamma), where gamma is Euler's constant A001620.

Original entry on oeis.org

5, 4, 9, 5, 3, 9, 3, 1, 2, 9, 8, 1, 6, 4, 4, 8, 2, 2, 3, 3, 7, 6, 6, 1, 7, 6, 8, 8, 0, 2, 9, 0, 7, 7, 8, 8, 3, 3, 0, 6, 9, 8, 9, 8, 1, 2, 6, 3, 0, 6, 4, 7, 9, 1, 0, 9, 0, 1, 5, 1, 3, 0, 4, 5, 7, 6, 6, 3, 1, 4, 2, 0, 0, 5, 5, 7, 5, 3, 0, 4, 7, 5, 6, 2, 6, 1, 8
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Aug 24 2025: (Start)
By definition, the Euler-Mascheroni constant gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*log(s(n+k)). Then it appears that E(n) converges rapidly to log(gamma). For example, E(50) = -0.549539312981644822337661768802(88...) gives log(gamma) correct to 30 decimal digits. Cf. A073004. (End)

Examples

			.549539312981644822337661768802907788330698981263...
		

References

  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -Log(EulerGamma(R)); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[-Log[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Sep 07 2018 *)
  • PARI
    -log(Euler) \\ Michel Marcus, Mar 11 2013
    

A081855 Decimal expansion of Gamma''(1).

Original entry on oeis.org

1, 9, 7, 8, 1, 1, 1, 9, 9, 0, 6, 5, 5, 9, 4, 5, 1, 1, 0, 7, 9, 0, 7, 9, 1, 3, 0, 3, 0, 0, 1, 2, 6, 9, 4, 1, 5, 8, 7, 8, 3, 6, 7, 0, 4, 1, 4, 5, 6, 4, 2, 8, 1, 8, 0, 8, 8, 6, 3, 9, 1, 5, 6, 7, 3, 7, 2, 2, 7, 3, 2, 6, 4, 0, 9, 8, 9, 5, 7, 5, 4, 3, 4, 9, 4, 8, 9, 2, 1, 6, 9, 2, 5, 1, 4, 7, 4, 6, 8, 2, 6, 0, 7, 0, 4
Offset: 1

Views

Author

Benoit Cloitre, Apr 11 2003

Keywords

Comments

Also the decimal expansion of the Integral_{x>=0} exp(-x)*(log(x))^2 dx. - Robert G. Wilson v, Aug 18 2017

Examples

			1.978111990655945110790791303001269415878367... [corrected by _Georg Fischer_, Jul 29 2021]
		

References

  • Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 179.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.2, p. 31.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^2 + Evaluate(L,2); // G. C. Greubel, Aug 29 2018
  • Mathematica
    EulerGamma^2 + Zeta[2] // RealDigits[#, 10, 105] & // First (* Jean-François Alcover, Apr 29 2013 *)
    RealDigits[ Integrate[ Exp[-x]*Log[x]^2, {x, 0, Infinity}], 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2017 *)
  • PARI
    Euler^2+zeta(2) \\ Charles R Greathouse IV, Aug 18 2017
    
  • PARI
    intnum(x=0,[oo,1],exp(-x)*log(x)^2) \\ Charles R Greathouse IV, Aug 18 2017
    

Formula

The second derivative of Gamma(x) at x=1 is Gamma^2+zeta(2) = 1.97811199... where Gamma is the Euler constant and zeta(2) = Pi^2/6.

A344964 Decimal expansion of the sum of the reciprocals of the squares of the zeros of the digamma function.

Original entry on oeis.org

5, 2, 6, 7, 9, 8, 0, 1, 2, 4, 3, 5, 2, 3, 9, 7, 9, 8, 3, 7, 3, 5, 6, 2, 1, 6, 3, 6, 2, 9, 3, 3, 1, 9, 7, 9, 4, 3, 1, 6, 2, 6, 6, 8, 4, 3, 8, 7, 0, 0, 2, 5, 0, 5, 6, 3, 5, 7, 5, 0, 8, 0, 2, 6, 1, 1, 2, 2, 8, 8, 2, 0, 4, 9, 0, 5, 3, 5, 9, 2, 9, 1, 1, 6, 2, 1, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The sum is Sum_{k>=0} 1/x_k^2, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			5.26798012435239798373562163629331979431626684387002...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/2 + EulerGamma^2, 10, 100][[1]]

Formula

Equals Pi^2/2 + gamma^2 = A102753 + A155969, where gamma is Euler's constant (A001620).

A059558 Beatty sequence for 1 + 1/gamma^2.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Comments

The first term where this sequence breaks the progression a(n) = a(n-1) + 4 is a(715) = 2861. - Max Alekseyev, Mar 03 2007

Crossrefs

Beatty complement is A059557.

Programs

  • Mathematica
    Floor[Range[100]*(1 + 1/EulerGamma^2)] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 + 1/Euler^2; for (n = 1, 2000, write("b059558.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1+1/gamma^2)) where 1+1/gamma^2= 1+A098907^2 = 4.00139933... - R. J. Mathar, Sep 29 2023

Extensions

Removed incorrect comment, Joerg Arndt, Nov 14 2014

A070860 Decimal expansion of Pi^2/12 - gamma^2 /2.

Original entry on oeis.org

6, 5, 5, 8, 7, 8, 0, 7, 1, 5, 2, 0, 2, 5, 3, 8, 8, 1, 0, 7, 7, 0, 1, 9, 5, 1, 5, 1, 4, 5, 3, 9, 0, 4, 8, 1, 2, 7, 9, 7, 6, 6, 3, 8, 0, 4, 7, 8, 5, 8, 4, 3, 4, 7, 2, 9, 2, 3, 6, 2, 4, 4, 5, 6, 8, 3, 8, 7, 0, 8, 3, 8, 3, 5, 3, 7, 2, 2, 1, 0, 2, 0, 8, 6, 1, 8, 2, 8, 1, 5, 9, 9, 4, 0, 2, 1, 3, 6, 4, 0, 0, 0, 4, 8
Offset: 0

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Comments

This is erroneously computed as the linear term in the Laurent expansion of Gamma(x) = 1/x +c(0) + c(1)*x+ O(x^2) on page 135 of the Patterson book. The correct value of c(1) is A090998. - R. J. Mathar, Jul 11 2025

Examples

			0.65587807152025388107701951514539048127976638047858434729236244568387...
		

Programs

  • Magma
    R:= RealField(100); (Pi(R)^2 - 6*EulerGamma(R)^2)/12; // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[(Zeta[2] - EulerGamma^2)/2, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
  • PARI
    -(Euler^2-zeta(2))/2
    

Formula

(EulerGamma^2 - zeta(2))/2 = -0.65587807152025388....
Equals A072691 - A155969/2.

A059190 Engel expansion of gamma^2, (gamma is the Euler-Mascheroni constant A001620) = 0.333178.

Original entry on oeis.org

4, 4, 4, 4, 4, 6, 23, 26, 126, 132, 154, 269, 421, 911, 1899, 7335, 14245, 34244, 78354, 173699, 239896, 247397, 659900, 1646344, 2454988, 6831657, 65833355, 839918922, 1187969748, 3583279448, 4114383765, 6590212761, 11304687651
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A155969.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[EulerGamma^2, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A182497 Decimal expansion of gamma^3, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 9, 2, 3, 1, 5, 5, 1, 6, 8, 2, 1, 1, 8, 4, 5, 8, 9, 6, 6, 3, 1, 9, 2, 3, 7, 4, 4, 1, 9, 6, 3, 5, 9, 0, 7, 1, 2, 1, 6, 7, 8, 2, 6, 1, 3, 3, 3, 3, 7, 5, 2, 3, 8, 6, 7, 3, 2, 5, 2, 9, 1, 2, 5, 3, 9, 1, 7, 8, 8, 4, 4, 9, 1, 6, 1, 3, 7, 9, 3, 5, 9, 3, 7, 3, 9, 0, 9, 7, 1, 2, 3, 7, 8, 5, 5, 6, 6, 0, 5, 1, 1, 6, 5, 0
Offset: 0

Views

Author

Volker Werner, May 02 2012

Keywords

Examples

			0.19231551682118458966319237441963590712167826133337...
		

Crossrefs

Programs

  • Magma
    R:= RealField(100); EulerGamma(R)^3; // G. C. Greubel, Sep 01 2018
  • Mathematica
    RealDigits[EulerGamma^3, 10, 105][[1]]
  • PARI
    default(realprecision, 100); Euler^3 \\ G. C. Greubel, Dec 26 2016
    

Formula

Equals A001620^3.

A229156 Decimal expansion of the negated value of the integral over (1/(1-y) + 1/log(y))*log(1-y)/y between 0 and 1.

Original entry on oeis.org

9, 1, 6, 2, 4, 0, 1, 4, 9, 8, 4, 4, 2, 9, 5, 8, 3, 0, 5, 3, 4, 8, 0, 9, 2, 7, 5, 6, 2, 5, 7, 3, 3, 3, 8, 8, 8, 0, 1, 4, 4, 7, 1, 8, 2, 3, 9, 3, 8, 7, 6, 1, 3, 7, 8, 4, 4, 1, 8, 9, 2, 2, 3, 9, 4, 4, 7, 3, 5, 1, 9, 8, 4, 7, 7, 9, 6, 7, 2, 8, 6, 8, 6, 9, 3, 5, 9
Offset: 0

Views

Author

R. J. Mathar, Sep 15 2013

Keywords

Examples

			-0.91624014984429583053480927562573338...
		

Programs

  • Mathematica
    RealDigits[N[EulerGamma^2/2 + Pi^2/12 + StieltjesGamma[1], 2501]][[1]] (* G. C. Greubel, Dec 26 2016 *)
  • PARI
    intnum(y=0, 1, (1/(1-y)+1/log(y)) *log(1-y) /y) \\ Michel Marcus, Dec 26 2016

Formula

Equals A155969/2 + A072691 + A082633.

A091558 Decimal expansion of zeta(Gamma^2).

Original entry on oeis.org

9, 7, 3, 0, 2, 2, 8, 8, 9, 0, 2, 5, 8, 9, 5, 6, 1, 4, 6, 7, 0, 1, 8, 4, 2, 8, 9, 5, 1, 5, 4, 3, 0, 6, 5, 6, 6, 4, 1, 7, 5, 8, 5, 4, 1, 1, 3, 8, 0, 4, 2, 8, 2, 7, 0, 0, 7, 7, 5, 5, 0, 8, 7, 4, 8, 1, 8, 8, 7, 5, 2, 2, 9, 1, 4, 7, 8, 7, 3, 1, 3, 3, 6, 7, 5, 0, 4, 2, 0, 6, 0, 8, 5, 6, 6, 3, 6, 9, 0, 4
Offset: 0

Views

Author

Jon Perry, Mar 04 2004

Keywords

Examples

			zeta(gamma^2)=-0.973022889025895614670184289515430656641758541138042827...
		

Crossrefs

Programs

  • Maple
    Zeta(gamma^2) ; evalf(%) # R. J. Mathar, Aug 27 2024
  • Mathematica
    RealDigits[Zeta[EulerGamma^2],10,120][[1]] (* Harvey P. Dale, Nov 09 2017 *)
  • PARI
    zeta(Euler^2)
Showing 1-10 of 11 results. Next