cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A036987 Fredholm-Rueppel sequence.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Binary representation of the Kempner-Mahler number Sum_{k>=0} 1/2^(2^k) = A007404.
a(n) = (product of digits of n; n in binary notation) mod 2. This sequence is a transformation of the Thue-Morse sequence (A010060), since there exists a function f such that f(sum of digits of n) = (product of digits of n). - Ctibor O. Zizka, Feb 12 2008
a(n-1), n >= 1, the characteristic sequence for powers of 2, A000079, is the unique solution of the following formal product and formal power series identity: Product_{j>=1} (1 + a(j-1)*x^j) = 1 + Sum_{k>=1} x^k = 1/(1-x). The product is therefore Product_{l>=1} (1 + x^(2^l)). Proof. Compare coefficients of x^n and use the binary representation of n. Uniqueness follows from the recurrence relation given for the general case under A147542. - Wolfdieter Lang, Mar 05 2009
a(n) is also the number of orbits of length n for the map x -> 1-cx^2 on [-1,1] at the Feigenbaum critical value c=1.401155... . - Thomas Ward, Apr 08 2009
A054525 (Mobius transform) * A001511 = A036987 = A047999^(-1) * A001511 = the inverse of Sierpiński's gasket * the ruler sequence. - Gary W. Adamson, Oct 26 2009 [Of course this is only vaguely correct depending on how the fuzzy indexing in these formulas is made concrete. - R. J. Mathar, Jun 20 2014]
Characteristic function of A000225. - Reinhard Zumkeller, Mar 06 2012
Also parity of the Catalan numbers A000108. - Omar E. Pol, Jan 17 2012
For n >= 2, also the largest exponent k >= 0 such that n^k in binary notation does not contain both 0 and 1. Unlike for the decimal version of this sequence, A062518, where the terms are only conjectural, for this sequence the values of a(n) can be proved to be the characteristic function of A000225, as follows: n^k will contain both 0 and 1 unless n^k = 2^r-1 for some r. But this is a special case of Catalan's equation x^p = y^q-1, which was proved by Preda Mihăilescu to have no nontrivial solution except 2^3 = 3^2 - 1. - Christopher J. Smyth, Aug 22 2014
Image, under the coding a,b -> 1; c -> 0, of the fixed point, starting with a, of the morphism a -> ab, b -> cb, c -> cc. - Jeffrey Shallit, May 14 2016
Number of nonisomorphic Boolean algebras of order n+1. - Jianing Song, Jan 23 2020

Examples

			G.f. = 1 + x + x^3 + x^7 + x^15 + x^31 + x^63 + x^127 + x^255 + x^511 + ...
a(7) = 1 since 7 = 2^3 - 1, while a(10) = 0 since 10 is not of the form 2^k - 1 for any integer k.
		

Crossrefs

The first row of A073346. Occurs for first time in A073202 as row 6 (and again as row 8).
Congruent to any of the sequences A000108, A007460, A007461, A007463, A007464, A061922, A068068 reduced modulo 2. Characteristic function of A000225.
If interpreted with offset=1 instead of 0 (i.e., a(1)=1, a(2)=1, a(3)=0, a(4)=1, ...) then this is the characteristic function of 2^n (A000079) and as such occurs as the first row of A073265. Also, in that case the INVERT transform will produce A023359.
This is Guy Steele's sequence GS(1, 3), also GS(3, 1) (see A135416).
Cf. A054525, A047999. - Gary W. Adamson, Oct 26 2009

Programs

  • Haskell
    a036987 n = ibp (n+1) where
       ibp 1 = 1
       ibp n = if r > 0 then 0 else ibp n' where (n',r) = divMod n 2
    a036987_list = 1 : f [0,1] where f (x:y:xs) = y : f (x:xs ++ [x,x+y])
    -- Same list generator function as for a091090_list, cf. A091090.
    -- Reinhard Zumkeller, May 19 2015, Apr 13 2013, Mar 13 2013
    
  • Maple
    A036987:= n-> `if`(2^ilog2(n+1) = n+1, 1, 0):
    seq(A036987(n), n=0..128);
  • Mathematica
    RealDigits[ N[ Sum[1/10^(2^n), {n, 0, Infinity}], 110]][[1]]
    (* Recurrence: *)
    t[n_, 1] = 1; t[1, k_] = 1;
    t[n_, k_] := t[n, k] =
      If[n < k, If[n > 1 && k > 1, -Sum[t[k - i, n], {i, 1, n - 1}], 0],
       If[n > 1 && k > 1, Sum[t[n - i, k], {i, 1, k - 1}], 0]];
    Table[t[n, k], {k, n, n}, {n, 104}]
    (* Mats Granvik, Jun 03 2011 *)
    mb2d[n_]:=1 - Module[{n2 = IntegerDigits[n, 2]}, Max[n2] - Min[n2]]; Array[mb2d, 120, 0] (* Vincenzo Librandi, Jul 19 2019 *)
    Table[PadRight[{1},2^k,0],{k,0,7}]//Flatten (* Harvey P. Dale, Apr 23 2022 *)
  • PARI
    {a(n) =( n++) == 2^valuation(n, 2)}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    a(n) = !bitand(n, n+1); \\ Ruud H.G. van Tol, Apr 05 2023
    
  • Python
    from sympy import catalan
    def a(n): return catalan(n)%2 # Indranil Ghosh, May 25 2017
    
  • Python
    def A036987(n): return int(not(n&(n+1))) # Chai Wah Wu, Jul 06 2022

Formula

1 followed by a string of 2^k - 1 0's. Also a(n)=1 iff n = 2^m - 1.
a(n) = a(floor(n/2)) * (n mod 2) for n>0 with a(0)=1. - Reinhard Zumkeller, Aug 02 2002 [Corrected by Mikhail Kurkov, Jul 16 2019]
Sum_{n>=0} 1/10^(2^n) = 0.110100010000000100000000000000010...
1 if n=0, floor(log_2(n+1)) - floor(log_2(n)) otherwise. G.f.: (1/x) * Sum_{k>=0} x^(2^k) = Sum_{k>=0} x^(2^k-1). - Ralf Stephan, Apr 28 2003
a(n) = 1 - A043545(n). - Michael Somos, Aug 25 2003
a(n) = -Sum_{d|n+1} mu(2*d). - Benoit Cloitre, Oct 24 2003
Dirichlet g.f. for right-shifted sequence: 2^(-s)/(1-2^(-s)).
a(n) = A000108(n) mod 2 = A001405(n) mod 2. - Paul Barry, Nov 22 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{j=0..k} binomial(k, 2^j-1). - Paul Barry, Jun 01 2006
A000523(n+1) = Sum_{k=1..n} a(k). - Mitch Harris, Jul 22 2011
a(n) = A209229(n+1). - Reinhard Zumkeller, Mar 07 2012
a(n) = Sum_{k=1..n} A191898(n,k)*cos(Pi*(n-1)*(k-1))/n; (conjecture). - Mats Granvik, Mar 04 2013
a(n) = A000035(A000108(n)). - Omar E. Pol, Aug 06 2013
a(n) = 1 iff n=2^k-1 for some k, 0 otherwise. - M. F. Hasler, Jun 20 2014
a(n) = ceiling(log_2(n+2)) - ceiling(log_2(n+1)). - Gionata Neri, Sep 06 2015
From John M. Campbell, Jul 21 2016: (Start)
a(n) = (A000168(n-1) mod 2).
a(n) = (A000531(n+1) mod 2).
a(n) = (A000699(n+1) mod 2).
a(n) = (A000891(n) mod 2).
a(n) = (A000913(n-1) mod 2), for n>1.
a(n) = (A000917(n-1) mod 2), for n>0.
a(n) = (A001142(n) mod 2).
a(n) = (A001246(n) mod 2).
a(n) = (A001246(n) mod 4).
a(n) = (A002057(n-2) mod 2), for n>1.
a(n) = (A002430(n+1) mod 2). (End)
a(n) = 2 - A043529(n). - Antti Karttunen, Nov 19 2017
a(n) = floor(1+log(n+1)/log(2)) - floor(log(2n+1)/log(2)). - Adriano Caroli, Sep 22 2019
This is also the decimal expansion of -Sum_{k>=1} mu(2*k)/(10^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

Extensions

Edited by M. F. Hasler, Jun 20 2014

A001146 a(n) = 2^(2^n).

Original entry on oeis.org

2, 4, 16, 256, 65536, 4294967296, 18446744073709551616, 340282366920938463463374607431768211456, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 0

Views

Author

Keywords

Comments

Or, write previous term in base 2, read in base 4.
a(1) = 2, a(n) = smallest power of 2 which does not divide the product of all previous terms.
Number of truth tables generated by Boolean expressions of n variables. - C. Bradford Barber (bradb(AT)shore.net), Dec 27 2005
From Ross Drewe, Feb 13 2008: (Start)
Or, number of distinct n-ary operators in a binary logic. The total number of n-ary operators in a k-valued logic is T = k^(k^n), i.e., if S is a set of k elements, there are T ways of mapping an ordered subset of n elements from S to an element of S. Some operators are "degenerate": the operator has arity p, if only p of the n input values influence the output. Therefore the set of operators can be partitioned into n+1 disjoint subsets representing arities from 0 to n.
For n = 2, k = 2 gives the familiar Boolean operators or functions, C = F(A,B). There are 2^2^2 = 16 operators, composed of: arity 0: 2 operators (C = 0 or 1), arity 1: 4 operators (C = A, B, not(A), not(B)), arity 2: 10 operators (including well-known pairs AND/NAND, OR/NOR, XOR/EQ). (End)
From José María Grau Ribas, Jan 19 2012: (Start)
Or, numbers that can be formed using the number 2, the power operator (^), and parenthesis. (End) [The paper by Guy and Selfridge (see also A003018) shows that this is the same as the current sequence. - N. J. A. Sloane, Jan 21 2012]
a(n) is the highest value k such that A173419(k) = n+1. - Charles R Greathouse IV, Oct 03 2012
Let b(0) = 8 and b(n+1) = the smallest number not in the sequence such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n) = a(n) for n > 0. - Derek Orr, Jan 15 2015
Twice the number of distinct minimal toss sequences of a coin to obtain all sequences of length n, which is 2^(2^n-1). This derives from the 2^n ways to cut each of the de Bruijn sequences B(2,n). - Maurizio De Leo, Feb 28 2015
I conjecture that { a(n) ; n>1 } are the numbers such that n^4-1 divides 2^n-1, intersection of A247219 and A247165. - M. F. Hasler, Jul 25 2015
Erdős has shown that it is an irrationality sequence (see Guy reference). - Stefano Spezia, Oct 13 2024

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n+1) = (a(n))^2.
1 = Sum_{n>=0} a(n)/A051179(n+1) = 2/3 + 4/15 + 16/255 + 256/65535, ..., with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - Gary W. Adamson, Jun 15 2003
a(n) = A000079(A000079(n)). - Robert Israel, Jan 15 2015
Sum_{n>=0} 1/a(n) = A007404. - Amiram Eldar, Oct 14 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = 2.
Product_{n>=0} (1 - 1/a(n)) = A215016. (End)

A007400 Continued fraction for Sum_{n>=0} 1/2^(2^n) = 0.8164215090218931...

Original entry on oeis.org

0, 1, 4, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 6, 4
Offset: 0

Views

Author

Keywords

Examples

			0.816421509021893143708079737... = 0 + 1/(1 + 1/(4 + 1/(2 + 1/(4 + ...))))
		

References

  • M. Kmošek, Rozwinieçie Niektórych Liczb Niewymiernych na Ulamki Lancuchowe (Continued Fraction Expansion of Some Irrational Numbers), Master's thesis, Uniwersytet Warszawski, 1979.

Crossrefs

Cf. A007404 (decimal), A073088 (partial sums), A073414/A073415 (convergents), A088431 (half), A089267, A092910.

Programs

  • Maple
    a:= proc(n) option remember; local n8, n16;
        n8:= n mod 8;
        if n8 = 0 or n8 = 3 then return 2
        elif n8 = 4 or n8 = 7 then return 4
        elif n8 = 1 then return procname((n+1)/2)
        elif n8 = 2 then return procname((n+2)/2)
        fi;
        n16:= n mod 16;
        if n16 = 5 or n16 = 14 then return 4
        elif n16 = 6 or n16 = 13 then return 6
        fi
    end proc:
    a(0):= 0: a(1):= 1: a(2):= 4:
    map(a, [$0..1000]); # Robert Israel, Jun 14 2016
  • Mathematica
    a[n_] := a[n] = Which[n < 3, {0, 1, 4}[[n+1]], Mod[n, 8] == 1, a[(n+1)/2], Mod[n, 8] == 2, a[(n+2)/2], True, {2, 0, 0, 2, 4, 4, 6, 4, 2, 0, 0, 2, 4, 6, 4, 4}[[Mod[n, 16]+1]]]; Table[a[n], {n, 0, 98}] (* Jean-François Alcover, Nov 29 2013, after Ralf Stephan *)
  • PARI
    a(n)=if(n<3,[0,1,4][n+1],if(n%8==1,a((n+1)/2),if(n%8==2,a((n+2)/2),[2,0,0,2,4,4,6,4,2,0,0,2,4,6,4,4][(n%16)+1]))) /* Ralf Stephan */
    
  • PARI
    a(n)=contfrac(suminf(n=0,1/2^(2^n)))[n+1]
    
  • PARI
    { allocatemem(932245000); default(realprecision, 26000); x=suminf(n=0, 1/2^(2^n)); x=contfrac(x); for (n=1, 20001, write("b007400.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 07 2009
    
  • Scheme
    (define (A007400 n) (cond ((<= n 1) n) ((= 2 n) 4) (else (case (modulo n 8) ((0 3) 2) ((4 7) 4) ((1) (A007400 (/ (+ 1 n) 2))) ((2) (A007400 (/ (+ 2 n) 2))) (else (case (modulo n 16) ((5 14) 4) ((6 13) 6))))))) ;; (After Ralf Stephan's recurrence) - Antti Karttunen, Aug 12 2017

Formula

From Ralf Stephan, May 17 2005: (Start)
a(0)=0, a(1)=1, a(2)=4; for n > 2:
a(8k) = a(8k+3) = 2;
a(8k+4) = a(8k+7) = a(16k+5) = a(16k+14) = 4;
a(16k+6) = a(16k+13) = 6;
a(8k+1) = a(4k+1);
a(8k+2) = a(4k+2). (End)

A078585 Decimal expansion of Sum_{n>=0} 1/4^(2^n).

Original entry on oeis.org

3, 1, 6, 4, 2, 1, 5, 0, 9, 0, 2, 1, 8, 9, 3, 1, 4, 3, 7, 0, 8, 0, 7, 9, 7, 3, 7, 5, 3, 0, 5, 2, 5, 2, 2, 1, 7, 0, 3, 3, 1, 1, 3, 7, 5, 9, 2, 0, 5, 5, 2, 8, 0, 4, 3, 4, 1, 2, 1, 0, 9, 0, 3, 8, 4, 3, 0, 5, 5, 6, 1, 4, 1, 9, 4, 5, 5, 5, 3, 0, 0, 0, 6, 0, 4, 8, 5, 3, 1, 3, 2, 4, 8, 3, 9, 7, 2, 6, 5, 6, 1, 7, 5, 5, 8
Offset: 0

Views

Author

Robert G. Wilson v, Dec 01 2002

Keywords

Examples

			0.316421509021893143708079737530525221703311375920552804341210903843055...
		

Crossrefs

Continued fraction is given in A006464.

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/4^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    { default(realprecision, 20080); x=suminf(n=0, 1/4^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b078585.txt", n, " ", d)); } \\ Harry J. Smith, May 11 2009

Formula

Equals -Sum_{k>=1} mu(2*k)/(4^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020
Equals A007404 - 1/2. - Kevin Ryde, Nov 11 2020

A078885 Decimal expansion of Sum {n>=0} 1/3^(2^n).

Original entry on oeis.org

4, 5, 6, 9, 4, 2, 5, 6, 2, 4, 7, 7, 6, 3, 9, 6, 6, 1, 1, 1, 5, 4, 9, 1, 8, 2, 6, 1, 6, 6, 9, 0, 3, 0, 3, 7, 9, 8, 9, 9, 4, 2, 5, 9, 9, 7, 1, 3, 8, 3, 1, 1, 9, 2, 0, 9, 1, 0, 5, 6, 8, 7, 4, 3, 0, 9, 9, 8, 2, 4, 1, 8, 2, 9, 9, 6, 9, 0, 0, 2, 9, 5, 1, 8, 8, 2, 5, 1, 5, 2, 6, 6, 8, 0, 6, 8, 7, 7, 5, 3, 3, 4, 5, 2, 5
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.456942562477639661115491826166903037989942599713831192091056874309982...
		

Crossrefs

Cf. A004200 (continued fraction), A011764.

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/3^(2^n), {n, 0, Infinity}], 110]] [[1]]
  • PARI
    default(realprecision, 20080); x=suminf(n=0, 1/3^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b078885.txt", n, " ", d)); \\ Harry J. Smith, May 10 2009

Formula

Equals -Sum_{k>=1} mu(2*k)/(3^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A078886 Decimal expansion of Sum {n>=0} 1/5^(2^n).

Original entry on oeis.org

2, 4, 1, 6, 0, 2, 5, 6, 0, 0, 0, 6, 5, 5, 3, 6, 0, 0, 0, 0, 0, 0, 4, 2, 9, 4, 9, 6, 7, 2, 9, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 4, 4, 6, 7, 4, 4, 0, 7, 3, 7, 0, 9, 5, 5, 1, 6, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 2, 8, 2, 3, 6, 6, 9, 2, 0, 9, 3, 8, 4
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Comments

Decimal expansion has increasingly large gaps of zeros, the digits delimited by these zeros are equal to 2^(2^m) as m=0,1,2,3,... The continued fraction expansion (A122165) and consists entirely of 3's, 5's and 7's, after an initial partial quotient of 4. - Paul D. Hanna, Aug 22 2006

Examples

			0.241602560006553600000...
From _Paul D. Hanna_, Aug 22 2006: (Start)
Decimal expansion consists of large gaps of zeros between strings of digits that form powers of 2; this can be seen by grouping the digits as follows:
x = .2 4 16 0 256 000 65536 000000 4294967296 000000000000 ...= 0.24160256000655360000004294...
and then recognizing the substrings as powers of 2:
2 = 2^(2^0), 4 = 2^(2^1), 16 = 2^(2^2), 65536 = 2^(2^4), 4294967296 = 2^(2^5), 18446744073709551616 = 2^(2^6), ... (End)
		

Crossrefs

Cf. A122165 (continued fraction), A176594.

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/5^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    {a(n)=local(x=sum(k=0,ceil(3+log(n+1)),1/5^(2^k)));(floor(10^n*x))%10} \\ Paul D. Hanna, Aug 22 2006

Formula

Equals -Sum_{k>=1} mu(2*k)/(5^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

Extensions

Edited by R. J. Mathar, Aug 02 2008

A078887 Decimal expansion of Sum {n>=0} 1/6^(2^n).

Original entry on oeis.org

1, 9, 5, 2, 1, 6, 6, 4, 4, 7, 5, 7, 2, 5, 1, 2, 8, 4, 9, 2, 5, 1, 0, 5, 1, 0, 6, 3, 5, 1, 5, 2, 1, 9, 4, 8, 4, 3, 2, 2, 4, 3, 4, 6, 8, 9, 9, 3, 2, 0, 3, 7, 2, 9, 8, 0, 7, 9, 2, 3, 1, 7, 4, 2, 6, 7, 3, 0, 3, 5, 8, 8, 3, 7, 2, 1, 2, 7, 6, 9, 0, 9, 0, 0, 4, 8, 7, 8, 5, 6, 1, 4, 9, 1, 6, 2, 4, 4, 6, 3, 1, 3, 6, 2, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.195216644757251284925...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/6^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/6^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals -Sum_{k>=1} mu(2*k)/(6^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A078888 Decimal expansion of Sum {n>=0} 1/7^(2^n).

Original entry on oeis.org

1, 6, 3, 6, 8, 1, 9, 7, 2, 7, 1, 6, 8, 6, 8, 0, 1, 7, 9, 1, 1, 7, 2, 9, 7, 2, 5, 8, 9, 3, 9, 0, 9, 2, 0, 0, 6, 0, 5, 2, 4, 4, 8, 5, 4, 1, 5, 9, 3, 3, 6, 8, 2, 5, 3, 2, 7, 8, 6, 2, 2, 1, 0, 3, 5, 9, 7, 2, 5, 1, 1, 8, 5, 9, 2, 9, 2, 3, 5, 7, 5, 0, 2, 5, 1, 1, 7, 3, 9, 7, 8, 4, 0, 1, 2, 7, 2, 9, 4, 3, 8, 1, 8, 4, 7
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.163681972716868017911...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/7^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/7^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals -Sum_{k>=1} mu(2*k)/(7^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A078889 Decimal expansion of Sum {n>=0} 1/8^(2^n).

Original entry on oeis.org

1, 4, 0, 8, 6, 9, 2, 0, 0, 2, 2, 9, 6, 4, 8, 3, 2, 8, 1, 0, 4, 3, 0, 3, 8, 0, 0, 5, 1, 3, 5, 5, 1, 1, 3, 0, 1, 0, 4, 8, 7, 4, 0, 7, 9, 5, 1, 1, 5, 8, 7, 6, 5, 7, 0, 4, 4, 6, 8, 3, 8, 8, 8, 8, 6, 5, 8, 8, 4, 5, 4, 8, 1, 8, 9, 4, 4, 7, 2, 5, 6, 1, 1, 6, 1, 0, 1, 2, 3, 4, 0, 7, 1, 1, 8, 4, 1, 1, 0, 4, 5, 5, 5, 1, 9
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.140869200229648328104...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/8^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/8^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals -Sum_{k>=1} mu(2*k)/(8^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

A078890 Decimal expansion of Sum {n>=0} 1/9^(2^n).

Original entry on oeis.org

1, 2, 3, 6, 0, 9, 2, 2, 9, 1, 4, 4, 3, 0, 6, 3, 2, 7, 7, 8, 2, 1, 5, 8, 4, 9, 2, 8, 3, 3, 5, 6, 9, 7, 0, 4, 6, 5, 6, 6, 0, 9, 2, 6, 6, 3, 8, 0, 4, 9, 7, 8, 5, 8, 7, 5, 7, 7, 2, 3, 5, 4, 0, 9, 7, 6, 6, 4, 9, 0, 8, 4, 9, 6, 6, 3, 5, 6, 6, 9, 6, 1, 8, 5, 4, 9, 1, 8, 1, 9, 3, 3, 4, 7, 3, 5, 4, 4, 2, 0, 0, 1, 1, 9, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2002

Keywords

Examples

			0.123609229144306327782...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/9^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    suminf(n=0, 1/9^(2^n)) \\ Michel Marcus, Nov 11 2020

Formula

Equals A078885 - 1/3 = A078885 - A010701. - R. J. Mathar, Apr 23 2009
Equals -Sum_{k>=1} mu(2*k)/(9^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020
Showing 1-10 of 25 results. Next