cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078608 a(n) = ceiling(2/(2^(1/n)-1)).

Original entry on oeis.org

2, 5, 8, 11, 14, 17, 20, 23, 25, 28, 31, 34, 37, 40, 43, 46, 49, 51, 54, 57, 60, 63, 66, 69, 72, 75, 77, 80, 83, 86, 89, 92, 95, 98, 100, 103, 106, 109, 112, 115, 118, 121, 124, 126, 129, 132, 135, 138, 141, 144, 147, 150, 152, 155, 158, 161, 164, 167, 170, 173, 176, 178, 181
Offset: 1

Views

Author

Jon Perry, Dec 09 2002

Keywords

Comments

For n >= 2, a(n) is the least positive integer x such that 2*x^n > (x+2)^n. For example, a(2)=5 as 4^2=16, 5^2=25, 6^2=36 and 7^2=49.
Coincides with floor( 2*n/(log 2) ) for all n from 1 to 777451915729367 but differs at 777451915729368. See A129935.
The first few values of n for which this sequence differs from floor( 2*n/(log 2) ) were found by Dean Hickerson in 2002. - N. J. A. Sloane, Apr 30 2014
The sequence floor( log(n)/(2*log(2)) ) is mentioned by Erdős and Selfridge (1973). This sequence begins 0,0,0,1,1,1,1,... = 0 (3 times), 1 (12 times), 2 (48 times), 3 (192 times), 4 (768 times), ..., and grows too slowly to have its own entry. It is related to the game studied by Hales and Jewett (1963). - N. J. A. Sloane, Dec 02 2016

References

  • S. Golomb, "Martin Gardner and Tictacktoe," in Demaine, Demaine, and Rodgers, eds., A Lifetime of Puzzles, A K Peters, 2008, pp. 293-301.
  • S. W. Golomb and A. W. Hales, "Hypercube Tic-Tac-Toe", in "More Games of No Chance", ed. R. J. Nowakowski, MSRI Publications 42, Cambridge University Press, 2002, pp. 167-182. Here it is stated that the first counterexample is at n=6847196937, an error due to faulty multiprecision arithmetic. The correct value was found by Dean Hickerson in 2002, and J. Buhler in 2004, and is reported in S. Golomb (2008).
  • Dean Hickerson, Email to Jon Perry and N. J. A. Sloane, Dec 16 2002. Gives first three terms of A129935: 777451915729368, 140894092055857794, 1526223088619171207, as well as five later terms. - N. J. A. Sloane, Apr 30 2014

Crossrefs

Programs

  • Haskell
    a078608 = ceiling . (2 /) . (subtract 1) . (2 **) . recip . fromIntegral
    -- Reinhard Zumkeller, Mar 27 2015
  • Mathematica
    Table[(Ceiling[2/(2^(1/n)-1)]), {n, 1, 100}] (* Vincenzo Librandi, May 01 2014 *)
  • PARI
    for (n=2,50, x=2; while (2*x^n<=((x+2)^n),x++); print1(x","))
    

Extensions

Edited by Dean Hickerson, Dec 17 2002
Revised by N. J. A. Sloane, Jun 07 2007