A078616 a(n) = Sum_{k=0..n} A010815(k).
1, 0, -1, -1, -1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Mircea Merca, Higher-order differences and higher-order partial sums of Euler's partition function, 2018.
Programs
-
PARI
a(n)=polcoeff(eta(x)/(1-x)+O(x^n),n)
Formula
For m > 0, a(k)=0 if A000326(m) <= k < A000326(m) + m; a(k)=(-1)^m if A000326(m) + m <= k < A000326(m+1).
G.f.: eta(x)/(1-x). - Benoit Cloitre, Jan 31 2004
G.f.: exp(-Sum_{k>=1} (sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 18 2018
Comments