A078618 a(n) = floor(average of first n cubes).
1, 4, 12, 25, 45, 73, 112, 162, 225, 302, 396, 507, 637, 787, 960, 1156, 1377, 1624, 1900, 2205, 2541, 2909, 3312, 3750, 4225, 4738, 5292, 5887, 6525, 7207, 7936, 8712, 9537, 10412, 11340, 12321, 13357, 14449, 15600, 16810, 18081, 19414, 20812, 22275
Offset: 1
Examples
a(3) = floor((1 + 8 + 27)/3) = 12.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).
Crossrefs
Cf. A000537.
Programs
-
Maple
ZL:=n->sum(i^3, i=1..n): a:=n->floor(numer(ZL(n))/n): seq(a(n), n=1..44); # Zerinvary Lajos, Mar 28 2007
-
Mathematica
s = 0; a = {}; For[i = 1, i <= 100, i++, s = s + i^3; a = Append[a, Floor[(1/i) s]]]; a
-
PARI
a(n)=n*(n^2+2*n+1)\4 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = floor((1/n)*(Sum_{i=1..n} i^3)) = floor(n*(n+1)^2/4).
G.f.: x*(1+x+x^4+3*x^2) / ( (1+x)*(x^2+1)*(x-1)^4 ). - R. J. Mathar, Feb 20 2011