A078602
Number of ways to lace a shoe that has n pairs of eyelets.
Original entry on oeis.org
1, 2, 21, 601, 34278, 3144357, 421928841, 77832868334
Offset: 1
a(3) = 21: label the eyelets 1,2,3 from front to back on the left side then 4,5,6 from back to front on the right side. The lacings are: 124356 154326 153426 142536 145236 132546 135246 together with the following lacings and their mirror images: 125346 124536 125436 152346 153246 152436 154236.
A078601
Number of ways to lace a shoe that has n pairs of eyelets, assuming the lacing satisfies certain conditions.
Original entry on oeis.org
1, 3, 42, 1080, 51840, 3758400, 382838400, 52733721600, 9400624128000, 2105593491456000, 579255485276160000, 191957359005941760000, 75420399121328701440000, 34668462695110852608000000, 18432051070888873171353600000, 11223248177765618214764544000000, 7759395812038133743242706944000000
Offset: 1
Label the eyelets 1, ..., n from front to back on the left and from n+1, ..., 2n from back to front on the right. For n=2 the three solutions are 1 2 3 4, 3 1 2 4, 1 3 2 4.
For n=3 the first few solutions are 2 4 1 3 5 6, 1 4 2 3 5 6, 2 1 4 3 5 6, 1 2 4 3 5 6, 1 3 4 2 5 6, 3 1 4 2 5 6, 1 4 3 2 5 6, 3 4 1 2 5 6, 3 4 2 1 5 6, 2 4 3 1 5 6, 3 2 4 1 5 6, 2 3 4 1 5 6, 2 3 5 1 4 6, 3 2 5 1 4 6, 2 5 3 1 4 6, 3 5 2 1 4 6, ...
-
A078601 := n->((n!)^2/2)*add(binomial(n-k,k)^2/(n-k),k=0..floor(n/2));
-
a[n_] := If[n == 1, 1, n!^2/2 Sum[Binomial[n-k, k]^2/(n-k), {k, 0, n/2}]];
a /@ Range[1, 17] (* Jean-François Alcover, Oct 01 2019 *)
-
a(n)=if(n>1,n!^2*sum(k=0,n\2,binomial(n-k, k)^2/(n-k))/2,1) \\ Charles R Greathouse IV, Sep 10 2015
-
from sympy import factorial, binomial
a = lambda n:((factorial(n)**2)>>1) * sum((binomial(n-k,k)**2)/(n-k) for k in range(0,(n>>1)+1)) if n > 1 else 1
print([a(n) for n in range(1, 18)]) # Darío Clavijo, Mar 06 2024
A078674
Number of ways to lace a shoe that has n pairs of eyelets, assuming the lacing satisfies certain conditions.
Original entry on oeis.org
1, 3, 50, 2122, 155712, 17441962
Offset: 1
Apart from initial term,
A078629/2.
Showing 1-3 of 3 results.
Comments