A078637 a(n) = rad(n(n+1)(n+2)), where rad(m) is the largest squarefree number dividing m (see A007947).
6, 6, 30, 30, 210, 42, 42, 30, 330, 330, 858, 546, 2730, 210, 510, 102, 1938, 570, 3990, 2310, 10626, 1518, 690, 390, 390, 546, 1218, 6090, 26970, 930, 2046, 1122, 39270, 3570, 7770, 4218, 54834, 7410, 15990, 8610, 74046, 19866, 14190, 7590, 32430, 6486
Offset: 1
Keywords
Examples
a(3) = rad(3*4*5) = 30.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a078637 n = a007947 $ product [n..n+2] -- Reinhard Zumkeller, Jul 04 2012
-
Maple
with(numtheory):rad:=proc(n) local s,i: s:=ifactors(n)[2]: RETURN(mul(s[i][1],i=1..nops(s))): end; seq(rad(n*(n+1)*(n+2)),n=1..60); seq(piecewise(n mod 2=0,rad(n/2)*rad(n+1)*rad(n/2+1),rad(n)*rad(n+1)*rad(n+2)),n=1..60); (C. Ronaldo)
-
Mathematica
lsf[n_]:=Max[Select[Divisors[n],SquareFreeQ]]; lsf/@Table[n(n+1)(n+2),{n,50}] (* Harvey P. Dale, Oct 18 2020 *) a[n_] := Times @@ Union @@ (FactorInteger[#][[;; , 1]] & /@ (n + {0, 1, 2})); Array[a, 50] (* Amiram Eldar, Jun 30 2022 *)
-
PARI
rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i]) for (k=1,100,print1(rad(k*(k+1)*(k+2))","))
Formula
a(n) = rad(n)*rad(n+1)*rad(n+2) if n is odd; or rad(n/2)*rad(n+1)*rad(n/2+1) if n is even. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 13 2004