A078642 Numbers with two representations as the sum of two Fibonacci numbers.
4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
Offset: 1
Examples
16 has exactly two representations as the sum of Fibonacci numbers: 16 = 3 + 13 and 16 = 8 + 8. Hence 16 belongs to the sequence.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1)
Crossrefs
Programs
-
Mathematica
t = Split@ Sort@ Flatten@ Table[Fibonacci[i] + Fibonacci[j], {i, 2, 39}, {j, 2, i}]; Take[ t[[ # ]][[1]] & /@ Select[ Range@Length@t, Length[ t[[ # ]]] > 1 &], 36] (* Robert G. Wilson v *)
-
PARI
a(n)=([0,1; 1,1]^(n-1)*[4;6])[1,1] \\ Charles R Greathouse IV, Oct 07 2015
-
PARI
Vec(2*x*(2 + x) / (1 - x - x^2) + O(x^60)) \\ Colin Barker, Jan 29 2017
Formula
a(n) = 2F(n + 2), where F(n) is the n-th Fibonacci number.
a(n) = a(n - 1) + a(n - 2), n > 2 ; a(1) = 4, a(2) = 6 . G.f.: 2x*(2+x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 2F(n + 2) = F(n) + F(n + 3), where F(1) = F(2) = 1. - Alonso del Arte, Jul 07 2013
a(n) = (2^(-n)*((1-r)^n*(-3+r) + (1+r)^n*(3+r))) / r where r=sqrt(5). - Colin Barker, Jan 29 2017
Comments