A078713 Sum of squares of the distances between successive divisors of n.
0, 1, 4, 5, 16, 11, 36, 21, 40, 35, 100, 43, 144, 75, 108, 85, 256, 101, 324, 131, 216, 203, 484, 171, 416, 291, 364, 259, 784, 273, 900, 341, 552, 515, 804, 385, 1296, 651, 780, 519, 1600, 551, 1764, 659, 960, 971, 2116, 683, 1800, 885, 1356, 931, 2704, 911, 1988
Offset: 1
Keywords
Examples
The divisors of 10 are 1, 2, 5, 10 and the sum of the squares of the distances between successive divisors = (2-1)^2 + (5-2)^2 + (10-5)^2 = 35. Hence a(10) = 35.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := Module[{d, l, s, i}, d = Divisors[n]; l = Length[d]; s = 0; For[i = 1, i < l, i++, s = s + (d[[i + 1]] - d[[i]])^2]; s]; Table[f[n], {n, 1, 100}] Table[Total[Differences[Divisors[n]]^2],{n,60}] (* Harvey P. Dale, Apr 10 2018 *)