cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078747 Expansion of Sum_{k>0} k*phi(k)*x^k/(1+x^k).

Original entry on oeis.org

1, 1, 7, 5, 21, 7, 43, 21, 61, 21, 111, 35, 157, 43, 147, 85, 273, 61, 343, 105, 301, 111, 507, 147, 521, 157, 547, 215, 813, 147, 931, 341, 777, 273, 903, 305, 1333, 343, 1099, 441, 1641, 301, 1807, 555, 1281, 507, 2163, 595, 2101, 521, 1911, 785, 2757, 547
Offset: 1

Views

Author

Vladeta Jovovic, Dec 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, (4^e - 1)/3, (p^(2*e + 1) + 1)/(p + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 15 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, (4^f[i,2]-1)/3, (f[i,1]^(2*f[i,2]+1)+1)/(f[i,1]+1))); } \\ Amiram Eldar, Oct 15 2022

Formula

Multiplicative with a(2^e) = (4^e-1)/3, a(p^e) = (p^(2*e+1)+1)/(p+1), p>2.
L.g.f.: log(Product_{k>=1} (1 + x^k)^phi(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/(4*zeta(2)) = 0.182690... (A240976). - Amiram Eldar, Oct 15 2022
Dirichlet g.f.: (zeta(s)*zeta(s-2)/zeta(s-1))*(1-2^(1-s)). - Amiram Eldar, Dec 30 2022