A078783 a(0) = 0; a(1)=1; for n>1, a(n) = least positive integer m not among a(1),...,a(n-1) such that |m-a(n-1)| > |a(n-1)-a(n-2)|.
0, 1, 3, 6, 2, 7, 13, 4, 14, 25, 5, 26, 48, 8, 49, 91, 9, 92, 176, 10, 177, 345, 11, 346, 682, 12, 683, 1355, 15, 1356, 2698, 16, 2699, 5383, 17, 5384, 10752, 18, 10753, 21489, 19, 21490, 42962, 20, 42963, 85907, 21, 85908, 171796, 22, 171797
Offset: 0
References
- N. J. A. Sloane and Allan Wilks, On sequences of Recaman type, paper in preparation, 2006.
Links
Programs
-
Haskell
import Data.List (delete) a078783 n = a078783_list !! n (a078783_list, a117073_list) = unzip $ (0,0) : (1,1) : (3,2) : f 3 2 (2:[4..]) where f a d ms@(m:_) = (a', d') : f a' d' (delete a' ms) where (a', d') = if i > d then (m, i) else (a + d + 1, d + 1) i = a - m -- Reinhard Zumkeller, May 01 2015
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = For[m = 2, True, m++, If[FreeQ[Array[a, n-1], m], If[Abs[m - a[n-1]] > Abs[a[n-1] - a[n-2]], Return[m]]]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 02 2018 *)
Comments