A078803 Triangular array T given by T(n,k) = number of compositions of n into k parts, each in the set {1,2,3}.
1, 1, 1, 1, 2, 1, 0, 3, 3, 1, 0, 2, 6, 4, 1, 0, 1, 7, 10, 5, 1, 0, 0, 6, 16, 15, 6, 1, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1, 0, 0, 0, 0, 15, 126
Offset: 1
Examples
T(5,2) = 2 counts the compositions 2+3 and 3+2. Triangle begins 1; 1, 1; 1, 2, 1; 0, 3, 3, 1; 0, 2, 6, 4, 1; 0, 1, 7, 10, 5, 1; 0, 0, 6, 16, 15, 6, 1; 0, 0, 3, 19, 30, 21, 7, 1; 0, 0, 1, 16, 45, 50, 28, 8, 1; 0, 0, 0, 10, 51, 90, 77, 36, 9, 1; 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1; 0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1;
References
- Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 18.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Crossrefs
Programs
-
Maple
A078803 := proc(n,k) add( binomial(j,n-3*k+2*j)*binomial(k,j),j=0..k) ; end proc: # R. J. Mathar, Feb 22 2011
-
Mathematica
nn=8;CoefficientList[Series[1/(1-y(x+x^2+x^3)),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jan 08 2013 *)
Formula
T(n, k) = t(n-1, n-k), for 1<=k<=n, for n>=1, where the array t is given by A078802.
G.f.: 1/(1-t*z*(1+z+z^2))-1. - Emeric Deutsch, Mar 10 2004
T(n,k) = Sum_{j=0..k} C(j,n-3*k+2*j)*C(k,j). - Vladimir Kruchinin, Feb 10 2011
Extensions
More terms from Emeric Deutsch, Jun 16 2007
Comments