cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078818 a(n) = 30*binomial(2n,n)/(n+3).

Original entry on oeis.org

10, 15, 36, 100, 300, 945, 3080, 10296, 35100, 121550, 426360, 1511640, 5408312, 19501125, 70794000, 258529200, 949074300, 3500409330, 12964479000, 48198087000, 179799820200, 672822343050, 2524918756464, 9500112378000, 35830670759000, 135439935469020
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			a(5) = 30*binomial(10,5)/8 = 945.
		

Crossrefs

Programs

  • GAP
    List([0..30],n->30*Binomial(2*n,n)/(n+3)); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    [30*Binomial(2*n,n)/(n+3): n in [0..30]]; // Vincenzo Librandi, Aug 11 2018
  • Mathematica
    Table[(30 Binomial[2 n, n] / (n + 3)), {n, 0, 30}] (* Vincenzo Librandi, Aug 11 2018 *)

Formula

D-finite with recurrence a(n) = a(n-1)*(4n^2+6n-4)/(n^2+3n) = A078817(n, 2) = 5*A007946(n)/(2n+1) = 30*A000984(n)/(n+3).
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi/(135*sqrt(3)) + 7/45.
Sum_{n>=0} (-1)^n/a(n) = 9/125 - 32*log(phi)/(375*sqrt(5)), where phi is the golden ratio (A001622). (End)