A078826 Number of distinct primes contained as binary substrings in binary representation of n.
0, 0, 1, 1, 1, 2, 2, 2, 1, 1, 2, 4, 2, 4, 3, 2, 1, 2, 1, 3, 2, 2, 4, 6, 2, 2, 4, 5, 3, 6, 3, 3, 1, 1, 2, 3, 1, 3, 3, 4, 2, 3, 2, 5, 4, 5, 6, 7, 2, 3, 2, 3, 4, 5, 5, 7, 3, 3, 6, 8, 3, 7, 4, 3, 1, 1, 1, 3, 2, 3, 3, 5, 1, 2, 3, 5, 3, 5, 4, 5, 2, 3, 3, 6, 2, 2, 5, 7, 4, 5, 5, 5, 6, 8, 7, 8, 2, 3, 3, 3, 2, 5, 3, 5, 4
Offset: 0
Examples
n=7 -> '111' contains 2 different binary substrings which are primes: '11' (11b or b11) and '111' itself, therefore a(7)=2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a078826 n | n <= 1 = 0 | otherwise = length $ a225243_row n -- Reinhard Zumkeller, Aug 14 2013
-
Mathematica
a[n_] := (bits = IntegerDigits[n, 2]; lg = Length[bits]; Reap[Do[If[PrimeQ[p = FromDigits[bits[[i ;; j]], 2]], Sow[p]], {i, 1, lg-1}, {j, i+1, lg}]][[2, 1]] // Union // Length); a[0] = a[1] = 0; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, May 23 2013 *)
Comments