A078836 a(n) = n*2^(n-6).
6, 14, 32, 72, 160, 352, 768, 1664, 3584, 7680, 16384, 34816, 73728, 155648, 327680, 688128, 1441792, 3014656, 6291456, 13107200, 27262976, 56623104, 117440512, 243269632, 503316480, 1040187392, 2147483648, 4429185024, 9126805504, 18790481920, 38654705664
Offset: 6
Examples
a(6) = 6 since the palindromic compositions of 11 that contain a 5 are 3+5+3, 1+2+5+2+1, 2+1+5+1+2, 1+1+1+5+1+1+1 and 5+1+5, for a total of 6 5s. The palindromic compositions of 12 that contain a 6 are 3+6+3, 1+2+6+2+1, 2+1+6+1+2, 1+1+1+6+1+1+1 and 6+6.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 6..3000
- Phyllis Chinn, Ralph Grimaldi and Silvia Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin., Vol. 69 (2003), pp. 65-78.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Sun Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Magma
[n*2^(n-6): n in [6..40]]; // Vincenzo Librandi, Oct 04 2011
-
Mathematica
Table[n 2^(n - 6), {m, 6, 50}] LinearRecurrence[{4, -4}, {6, 14}, 20] (* Eric W. Weisstein, Sep 27 2017 *) CoefficientList[Series[-2 (-3 + 5 x)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
PARI
a(n)=n<<(n-6) \\ Charles R Greathouse IV, Oct 03 2011
-
PARI
Vec(-2*x^6*(5*x-3)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
-
Python
def a(n): return n << (n-6) print([a(n) for n in range(6, 37)]) # Michael S. Branicky, Jun 14 2021
Formula
From Colin Barker, Sep 29 2015: (Start)
a(n) = 2*A045891(n-4).
a(n) = 4*a(n-1) - 4*a(n-2) for n > 7.
G.f.: -2*x^6*(5*x-3) / (2*x-1)^2.
(End)
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=6} 1/a(n) = 64*log(2) - 661/15.
Sum_{n>=6} (-1)^n/a(n) = 391/15 - 64*log(3/2). (End)
Comments