A078876 a(n) = n^4*(n^4-1)/240.
0, 0, 1, 27, 272, 1625, 6993, 24010, 69888, 179334, 416625, 893101, 1791504, 3398759, 6148961, 10678500, 17895424, 29065308, 45916065, 70764303, 106666000, 157594437, 228648497, 326294606, 458645760, 635781250, 870110865, 1176787521, 1574172432, 2084357107
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, #14).
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Mathematica
Table[n^4*(n^4 - 1)/240, {n, 0, 30}] (* Amiram Eldar, May 31 2022 *)
Formula
G.f.: -x^2*(x+1)*(x^4+17*x^3+48*x^2+17*x+1) / (x-1)^9. - Colin Barker, Jun 18 2013
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=2} 1/a(n) = 450 - 8*Pi^4/3 - 60*Pi*coth(Pi).
Sum_{n>=2} (-1)^n/a(n) = 7*Pi^4/3 - 60*Pi*cosech(Pi) - 210. (End)
Comments