cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078876 a(n) = n^4*(n^4-1)/240.

Original entry on oeis.org

0, 0, 1, 27, 272, 1625, 6993, 24010, 69888, 179334, 416625, 893101, 1791504, 3398759, 6148961, 10678500, 17895424, 29065308, 45916065, 70764303, 106666000, 157594437, 228648497, 326294606, 458645760, 635781250, 870110865, 1176787521, 1574172432, 2084357107
Offset: 0

Views

Author

Benoit Cloitre, Jan 11 2003

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
For n>=2, the triple (n^6, 120*a(n), (n^8 + n^4)/2) form a Pythagorean triple whose short leg is a square and the other sides are triangular numbers. - Michel Marcus, Mar 15 2021

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, #14).

Crossrefs

Cf. A002415.
Cf. A001014 (n^6), A071231 ((n^8 + n^4)/2).

Programs

  • Mathematica
    Table[n^4*(n^4 - 1)/240, {n, 0, 30}] (* Amiram Eldar, May 31 2022 *)

Formula

G.f.: -x^2*(x+1)*(x^4+17*x^3+48*x^2+17*x+1) / (x-1)^9. - Colin Barker, Jun 18 2013
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=2} 1/a(n) = 450 - 8*Pi^4/3 - 60*Pi*coth(Pi).
Sum_{n>=2} (-1)^n/a(n) = 7*Pi^4/3 - 60*Pi*cosech(Pi) - 210. (End)