A078926 Number of primitive Pythagorean triangles with perimeter 2n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
Offset: 1
A078928 Smallest p for which there are exactly n primitive Pythagorean triangles with perimeter p; i.e., smallest p such that A070109(p) = n.
12, 1716, 14280, 317460, 1542684, 6240360, 19399380, 63303240, 239168580, 397687290, 458948490, 813632820, 562582020, 2824441620, 3346393050, 6915878970, 6469693230, 8720021310, 9146807670, 8254436190, 23065862820, 25859373540, 202536455550
Offset: 1
Keywords
Comments
A Pythagorean triangle is a right triangle whose edge lengths are all integers; such a triangle is 'primitive' if the lengths are relatively prime.
Least perimeter common to exactly n primitive Pythagorean triangles. - Lekraj Beedassy, May 14 2004
Examples
a(2)=1716; the primitive Pythagorean triangles with edge lengths (364, 627, 725) and (195, 748, 773) both have perimeter 1716.
Links
- Derek J. C. Radden and Peter T. C. Radden, Table of n, a(n) for n=1..39 (terms 1 through 15 were computed by Derek J. C. Radden)
- Shyam Sunder Gupta, Number Curiosities, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 23, 567-604.
- C. B. T. (Reviewer), Review of Andrew S. Anema, A table of primitive Pythagorean triangle with identical perimeters, Mathematical Tables and Other Aids to Computation, Vol. 10, No. 53 (Jan., 1956), pp. 35-36.
Programs
-
Mathematica
oddpart[n_] := If[OddQ[n], n, oddpart[n/2]]; ct[p_] := Length[Select[Divisors[oddpart[p/2]], p/2<#^2
Extensions
a(8) from Robert G. Wilson v, Dec 19 2002
a(9)-a(15) from Derek J C Radden, Dec 22 2012
a(16)-a(39) from Peter T. C. Radden, Dec 29 2012
Comments
Examples
Links
Crossrefs
Programs
Magma
Mathematica
PARI
Extensions