A078948 Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,4,2).
29, 59, 269, 1289, 2129, 2789, 5639, 8999, 13679, 14549, 18119, 36779, 62129, 75989, 80669, 83219, 88799, 93479, 113159, 115769, 124769, 132749, 150209, 160079, 163979, 203309, 207509, 223829, 228509, 278489, 282089, 284729, 298679, 312929, 313979, 323369, 337859
Offset: 1
Keywords
Examples
59 is in the sequence since 59, 61 = 59 + 2, 67 = 59 + 8, 71 = 59 + 12 and 73 = 59 + 14 are consecutive primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from R. J. Mathar)
- R. J. Mathar, Table of Prime Gap Constellations.
Crossrefs
Programs
-
GAP
K:=26*10^7+1;; # to get all terms <= K. P:=Filtered([1,3..K],IsPrime);; I:=[2,6,4,2];; P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; Q:=List(Positions(List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]),I),i->P[i]); # Muniru A Asiru, Sep 04 2017
-
Maple
for i from 1 to 10^5 do if [ithprime(i+1),ithprime(i+2),ithprime(i+3),ithprime(i+4)] = [ithprime(i)+2,ithprime(i)+8,ithprime(i)+12,ithprime(i)+14] then print(ithprime(i)); fi; od; # Muniru A Asiru, Sep 04 2017
-
Mathematica
Select[Partition[Prime[Range[26000]],5,1],Differences[#]=={2,6,4,2}&][[;;,1]] (* Harvey P. Dale, Dec 10 2024 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 6 && p4 - p3 == 4 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
Extensions
Edited by Dean Hickerson, Dec 20 2002
Comments