A078954 Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,2,4).
1597, 3907, 12097, 12907, 38317, 58897, 65827, 90007, 90187, 112237, 129277, 134077, 140407, 176317, 204427, 336757, 374977, 390097, 394717, 435637, 486667, 538147, 543997, 588937, 618577, 678637, 702337, 922627, 990277, 996157, 1086247, 1248337, 1326037, 1348537
Offset: 1
Keywords
Examples
90007 is in the sequence since 90007, 90011 = 90007 + 4, 90017 = 90007 + 10, 90019 = 90007 + 12 and 90023 = 90007 + 16 are consecutive primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..500 from R. J. Mathar)
Crossrefs
Programs
-
Mathematica
Transpose[Select[Partition[Prime[Range[85000]],5,1],Differences[#] == {4,6,2,4}&]][[1]] (* Harvey P. Dale, Sep 30 2012 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 2 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
Formula
a(n) == 7 (mod 30). - Amiram Eldar, Feb 21 2025
Extensions
Edited by Dean Hickerson, Dec 20 2002
Comments