A078958 Primes p such that the differences between the 5 consecutive primes starting with p are (6,2,4,6).
1601, 3911, 12101, 14621, 32051, 68891, 122021, 191441, 258101, 259151, 276581, 278801, 305471, 347051, 390101, 394721, 418331, 419591, 421691, 470201, 482501, 509681, 678641, 683471, 832361, 844421, 914351, 929051, 977351, 997091, 1043831, 1074701, 1104731, 1224851
Offset: 1
Keywords
Examples
3911 is in the sequence since 3911, 3917 = 3911 + 6, 3919 = 3911 + 8, 3923 = 3911 + 12 and 3929 = 3911 + 18 are consecutive primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Partition[Prime[Range[82000]],5,1],Differences[#]=={6,2,4,6}&][[All,1]] (* Harvey P. Dale, Jul 09 2021 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 2 && p4 - p3 == 4 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
Formula
a(n) == 11 (mod 30). - Amiram Eldar, Feb 22 2025
Extensions
Edited by Dean Hickerson, Dec 20 2002
Comments