cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078959 Primes p such that the differences between the 5 consecutive primes starting with p are (6,2,6,4).

Original entry on oeis.org

23, 53, 263, 1283, 2333, 5843, 6563, 14543, 19373, 32363, 41603, 48473, 49193, 51413, 75983, 88793, 106853, 113153, 115763, 138563, 150203, 160073, 163973, 204353, 223823, 229763, 246923, 284723, 319673, 326993, 337853, 338153, 357653, 433253, 443153, 460073, 460973
Offset: 1

Views

Author

Labos Elemer, Dec 19 2002

Keywords

Comments

Equivalently, primes p such that p, p+6, p+8, p+14 and p+18 are consecutive primes.

Examples

			53 is a term since 53, 59 = 53 + 6, 61 = 53 + 8, 67 = 53 + 14 and 71 = 53 + 18 are consecutive primes.
		

Crossrefs

Subsequence of A078854. - R. J. Mathar, May 06 2017

Programs

  • Mathematica
    l = {}; For[n = 1, n < 10^5, n++, If[Prime[n] + 6 == Prime[n + 1] \[And] Prime[n] + 8 == Prime[n + 2] \[And] Prime[n] + 14 == Prime[n + 3] \[And] Prime[n] + 18 == Prime[n + 4], AppendTo[l, Prime[n]]]]; l (* Jake Foster, Oct 27 2008 *)
    Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {6,2,6,4} &][[;;, 1]] (* Amiram Eldar, Feb 22 2025 *)
  • PARI
    list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 2 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025

Formula

a(n) == 23 (mod 30). - Amiram Eldar, Feb 22 2025

Extensions

Edited by Dean Hickerson, Dec 20 2002