A078963 Primes p such that the differences between the 5 consecutive primes starting with p are (6,4,6,2).
3313, 4993, 5851, 9613, 17971, 23011, 32353, 36913, 45121, 51421, 53881, 54403, 59611, 76243, 90001, 91951, 127591, 130633, 131431, 134353, 140401, 142963, 174061, 229753, 246913, 267661, 303361, 311551, 321313, 340111, 386143, 435553, 465061, 514513, 532993, 618571
Offset: 1
Keywords
Examples
23011 is in the sequence since 23011, 23017 = 23011 + 6, 23021 = 23011 + 10, 23027 = 23011 + 16 and 23029 = 23011 + 18 are consecutive primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
Crossrefs
Programs
-
Maple
L:= [2,3,5,7,11]: count:= 0: Res:= NULL: while count < 50 do L:= [op(L[2..5]),nextprime(L[5])]; if L - [L[1]$5] = [0,6,10,16,18] then count:= count+1; Res:= Res, L[1]; fi od: Res; # Robert Israel, Jun 04 2018
-
Mathematica
Transpose[Select[Partition[Prime[Range[50000]],5,1],Differences[#]=={6,4,6,2}&]][[1]] (* Harvey P. Dale, Mar 04 2011 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
Formula
Extensions
Edited by Dean Hickerson, Dec 20 2002
Comments