cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079051 Recamán variation: a(0) = 0; for n >= 1, a(n) = a(n-1) - f(n) if that number is positive and not already in the sequence, otherwise a(n) = a(n-1) + f(n), where f(n) = floor(sqrt(n)) (A000196).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 11, 13, 10, 13, 16, 19, 22, 25, 28, 24, 20, 24, 28, 32, 36, 40, 44, 48, 43, 38, 33, 38, 43, 48, 53, 58, 63, 68, 73, 67, 61, 55, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 96, 89, 82, 75, 82, 89, 96, 103, 110, 117, 124, 131, 138, 145, 152, 144, 136, 128, 120
Offset: 0

Views

Author

Benoit Cloitre, Feb 02 2003

Keywords

References

  • N. J. A. Sloane and Allan Wilks, On sequences of Recaman type, paper in preparation, 2006.

Crossrefs

Cf. A000196, A005132. Numbers missed are in A117247.

Programs

  • Mathematica
    Fold[Append[#1, If[MemberQ[#1, (a = #1[[-1]]) - (r = Floor@Sqrt@#2)], a + r, a - r]] &, {0, 1}, Range[2, 70]] (* Ivan Neretin, Apr 22 2018 *)
  • PARI
    lista(nn) = {va = vector(nn+1); last = 0; for (n=1, nn, new = last - sqrtint(n); if ((new <= 0) || vecsearch(vecsort(va,,8), new), new = last + sqrtint(n)); va[n+1] = new; last = new;); va;} \\ Michel Marcus, Apr 23 2018

Formula

Conjecture: for n>100, 1/2 < a(n)/(n*log(n)) < 1.
The conjecture is false. In fact, a(n) = n^(3/2)/6 + O(n). - N. J. A. Sloane, Apr 29 2006