cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079124 Number of ways to partition n into distinct positive integers <= phi(n), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 0, 4, 1, 5, 1, 11, 0, 17, 4, 13, 13, 37, 2, 53, 13, 51, 35, 103, 10, 135, 78, 167, 89, 255, 4, 339, 253, 378, 306, 542, 121, 759, 558, 872, 498, 1259, 121, 1609, 1180, 1677, 1665, 2589, 808, 3250, 1969, 3844, 3325, 5119, 1850, 6268, 4758, 7546, 7070
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 27 2002

Keywords

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).

Crossrefs

Programs

  • Haskell
    a079124 n = p [1 .. a000010 n] n where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Jul 05 2013
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n, phi(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 11 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[n, EulerPhi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)

Formula

a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m

Extensions

a(0)=1 prepended by Alois P. Heinz, May 11 2015