A079124 Number of ways to partition n into distinct positive integers <= phi(n), where phi is Euler's totient function (A000010).
1, 1, 0, 1, 0, 2, 0, 4, 1, 5, 1, 11, 0, 17, 4, 13, 13, 37, 2, 53, 13, 51, 35, 103, 10, 135, 78, 167, 89, 255, 4, 339, 253, 378, 306, 542, 121, 759, 558, 872, 498, 1259, 121, 1609, 1180, 1677, 1665, 2589, 808, 3250, 1969, 3844, 3325, 5119, 1850, 6268, 4758, 7546, 7070
Offset: 0
Keywords
References
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
Programs
-
Haskell
a079124 n = p [1 .. a000010 n] n where p _ 0 = 1 p [] _ = 0 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m -- Reinhard Zumkeller, Jul 05 2013
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)))) end: a:= n-> b(n, phi(n)): seq(a(n), n=0..100); # Alois P. Heinz, May 11 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[n, EulerPhi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
Formula
a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m
Extensions
a(0)=1 prepended by Alois P. Heinz, May 11 2015