cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A079177 Number of isomorphism classes of non-anti-associative closed binary operations on a set of order n.

Original entry on oeis.org

0, 8, 3320, 178964172
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079178.

Crossrefs

A079179 Number of anti-associative closed binary operations on a set of order n.

Original entry on oeis.org

1, 0, 2, 52, 421560
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Cf. A079176, A079180 (isomorphism classes), A079181, A079210.

Formula

a(n) = A002489(n) - A079176(n).
a(n) = Sum_{k>=1} A079181(n,k)*A079210(n,k).

Extensions

a(0)=1 prepended and a(1) corrected by Kamil Zabielski, Aug 28 2024

A079182 Number of non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 8, 18954, 4293918720, 298023193359375000, 10314424798468598595531571200, 256923577521058877628624940679495660344806, 6277101735386680763835789098689112757675628661308013936640
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

A023813(n) + A079182(n) = A002489(n).
Each a(n) is equal to the sum of the products of each element in row n of A079184 and the corresponding element of A079210.

Crossrefs

Programs

  • Mathematica
    Table[n^(n^2)-n^((n^2+n)/2), {n,1,10}] (* Geoffrey Critzer, Jan 27 2013 *)

Formula

a(n) = n^(n^2)-n^((n^2-n)/2).

Extensions

More terms from Geoffrey Critzer, Jan 27 2013

A079181 Number of isomorphism classes of anti-associative closed binary operations on a set of order n, listed by class size.

Original entry on oeis.org

1, 0, 2, 0, 0, 2, 0, 8, 0, 0, 2, 0, 29, 0, 383, 17366
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)

Examples

			First rows:
  1;
  0;
  2,0;
  0,2,0,8;
  0,0,2,0,29,0,383,17366;
  ...
		

Crossrefs

Cf. A027423 (row lengths), A079176, A079177, A079180 (row sums).

Formula

T(n,k) = A079171(n,k) - A079178(n,k).
A079179(n) = Sum_{k>=1} A079210(n,k) * T(n,k).

Extensions

a(0)=1 prepended and a(1) corrected by Kamil Zabielski, Aug 28 2024

A118542 Number of nonisomorphic groupoids with <= n elements.

Original entry on oeis.org

1, 2, 12, 3342, 178985294, 2483527716080119, 14325590005802419238355799, 50976900301828909677297289506452525838, 155682086691137998248942804080553139214788341933547854
Offset: 0

Views

Author

Jonathan Vos Post, May 06 2006

Keywords

Comments

The number of isomorphism classes of closed binary operations on sets of order <= n. See formulas by Christian G. Bower in A001329 Number of nonisomorphic groupoids with n elements.

Examples

			a(5) = 1 + 1 + 10 + 3330 + 178981952 + 2483527537094825 = 2483527716080119 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A001329(i). a(n) = SUM[i=0..n] (A079173(i)+A027851(i)). a(n) = SUM[i=0..n] (A079177(i)+A079180(i)). a(n) = SUM[i=0..n] (A079183(i)+A001425(i)). a(n) = SUM[i=0..n] (A079187(i)+A079190(i)). a(n) = SUM[i=0..n] (A079193(i)+A079196(i)+A079199(i)+A001426(i)).
Showing 1-6 of 6 results.