cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079255 a(n) is taken to be the smallest positive integer greater than a(n-1) such that the condition "n is in the sequence if and only if a(n) is odd and a(n+1) is even" can be satisfied.

Original entry on oeis.org

1, 4, 6, 9, 12, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 42, 44, 47, 50, 53, 56, 58, 61, 64, 66, 69, 72, 75, 78, 80, 83, 86, 88, 91, 94, 97, 100, 102, 105, 108, 110, 113, 116, 119, 122, 124, 127, 130, 132, 135, 138, 140, 143, 146, 148, 151, 154, 157, 160, 162, 165, 168
Offset: 1

Views

Author

Keywords

Comments

No two terms in the sequence are consecutive integers (see example for a(3)).

Examples

			a(2) cannot be odd; it also cannot be 2, since that would imply that a(2) was odd. 4 is the smallest value for a(2) that creates no contradiction. a(3) cannot be 5, which would imply that a(5) was odd because it is known from 4's being in the sequence that a(4) is odd and a(5) even. 6 is the smallest value for a(3) that creates no contradiction.
		

Crossrefs

Cf. A079000, A079259. First differences give A080428.

Formula

With the convention A026363(0)=0 (offset is 1 for this sequence) we have a(n)=A026363(2n)+1; a(n)=(1+sqrt(3))*n+O(1). The sequence satisfies the meta-system for n>=2: a(a(n))=2*a(n)+2*n+2 ; a(a(n)-1)=2*a(n)+2*n-1 ; a(a(n)-2)=2*a(n)+2*n-4 which allows us to have all terms since first differences =2 or 3 only. a(n)=a(n-1)+3 if n is in A026363, a(n)=a(n-1)+2 otherwise (if n is in A026364). - Benoit Cloitre, Apr 23 2008