cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005674 a(n) = 2^(n-1) + 2^[ n/2 ] + 2^[ (n-1)/2 ] - F(n+3).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 10, 25, 63, 144, 327, 711, 1534, 3237, 6787, 14056, 28971, 59283, 120894, 245457, 497167, 1004256, 2025199, 4077007, 8198334, 16467597, 33052491, 66293208
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions of n where mixing of even and odd summands occurs. That is, at least one even summand is bracketed by two odd summands, or vice versa. - Gregory L. Simay, Jul 27 2016

Examples

			a(6) = a(2*3) = 2^5 - f(9) + 3*2^2 = 32 - 34 + 12 = 10. The 10 compositions are (1,4,1), (3,2,1), (1,2,3), (2,1,2,1), (1,2,1,2), (2,1,1,2), (1,2,2,1), (1,2,1,1,1), (1,1,2,1,1), (1,1,1,2,1).
		

References

  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A079289, A027558 divided by 2.

Programs

  • Maple
    A005674:=-z**4/(2*z-1)/(z**2+z-1)/(-1+2*z**2); # [Conjectured by Simon Plouffe in his 1992 dissertation.]

Formula

From Gregory L. Simay, Jul 27 2016: (Start)
If n=2k, then a(n) = 2^(n-1) - 2*A079289(n) + 2^(n/2 - 1) + F(n).
If n=2k-1, then a(n) = 2^(n-1) - 2*A079289(n) + F(n). (End)

A193923 Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=(x+1)^n and q(n,x)=Sum_{k=0..n}F(k+1)*x^(n-k), where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 5, 8, 1, 4, 8, 13, 21, 1, 5, 12, 21, 34, 55, 1, 6, 17, 33, 55, 89, 144, 1, 7, 23, 50, 88, 144, 233, 377, 1, 8, 30, 73, 138, 232, 377, 610, 987, 1, 9, 38, 103, 211, 370, 609, 987, 1597, 2584, 1, 10, 47, 141, 314, 581, 979, 1596, 2584, 4181, 6765
Offset: 0

Views

Author

Clark Kimberling, Aug 09 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
The row sums equal A079289(2*n). - Johannes W. Meijer, Aug 12 2013

Examples

			First six rows:
1
1...1
1...2...3
1...3...5....8
1...4...8....13...21
1...5...12...21...34...55
		

Crossrefs

Cf. A001906 (Fibonacci(2*n)).

Programs

  • Maple
    T := proc(n, k) option remember: if k = 0 then return(1) fi: if k = n then return(combinat[fibonacci](2*n)) fi: T(n, k) := T(n-1, k-1) + T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..9); # Johannes W. Meijer, Aug 12 2013
  • Mathematica
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193923 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193924 *)

Formula

T(n, k) = Sum_{p=0..k} binomial(n+k-p-1, p). - Johannes W. Meijer, Aug 12 2013
T(n, n) = Fibonacci(2*n) for n>=1. - Michel Marcus, Nov 03 2020
Showing 1-2 of 2 results.