cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A079315 Number of cells that change from OFF to ON at stage n of the cellular automaton described in A079317.

Original entry on oeis.org

0, 1, 4, 4, 12, 4, 20, 12, 44, 4, 52, 12, 76, 12, 100, 36, 172, 4, 180, 12, 204, 12, 228, 36, 300, 12, 324, 36, 396, 36, 468, 108, 684, 4, 692, 12, 716, 12, 740, 36, 812, 12, 836, 36, 908, 36, 980, 108, 1196, 12, 1220, 36, 1292, 36, 1364, 108, 1580, 36, 1652, 108, 1868
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2003

Keywords

Comments

Start with cell (0,0) ON; at each succeeding stage the cells that share exactly one edge with an active cell change their state.
This is not the CA discussed by Singmaster in the reference given in A079314. That was an error based on my misreading of the paper. - N. J. A. Sloane, Aug 05 2009

References

  • D. Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.

Crossrefs

Programs

  • Mathematica
    wt[n_] := DigitCount[n, 2, 1];
    A147582[n_] := If[n == 1, 1, 4*3^(wt[n-1]-1)];
    A151914[n_] := Switch[n, 0, 0, 1, 4, _, (8/3)*Sum[3^wt[i], {i, 1, n-1}]+4];
    a[n_] := If[OddQ[n], A147582[(n-1)/2+1], A151914[n/2]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 21 2024 *)

Formula

a(2n+1) = A147582(n+1), a(2n) = A151914(n).

Extensions

More terms from John W. Layman, Oct 30 2003
Edited by N. J. A. Sloane, Aug 05 2009

A079316 Number of first-quadrant cells (including the two boundaries) that are ON at stage n of the cellular automaton described in A079317.

Original entry on oeis.org

1, 3, 3, 7, 5, 11, 9, 21, 11, 25, 15, 35, 19, 45, 29, 73, 31, 77, 35, 87, 39, 97, 49, 125, 53, 135, 63, 163, 73, 191, 101, 273, 103, 277, 107, 287, 111, 297, 121, 325, 125, 335, 135, 363, 145, 391, 173, 473, 177, 483, 187, 511, 197, 539, 225, 621, 235, 649, 263, 731
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2003

Keywords

Comments

Start with cell (0,0) active; at each succeeding stage the cells that share exactly one edge with an active cell change their state.
The pattern has 4-fold symmetry; sequence just counts cells in one quadrant.
This is not the CA discussed by Singmaster in the reference given in A079314. That was an error based on my misreading of the paper. - N. J. A. Sloane, Aug 05 2009

References

  • D. Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.

Crossrefs

Programs

  • PARI
    M=matrix(101,101); M[1,1]=1; for(s=1,100, c=[]; a=M[1,1]; for(x=2,100, for(y=2,100, a+=M[x,y]; if(M[x-1,y]+M[x+1,y]+M[x,y-1]+M[x,y+1]==1, c=concat(c,[[x,y]]) )); a+=M[x,1]+M[1,x]; if(M[x,2]==0 && M[x-1,1]+M[x+1,1]==1, c=concat(c,[[x,1]]) ); if(M[2,x]==0 && M[1,x-1]+M[1,x+1]==1, c=concat(c,[[1,x]]) )); print1(a,", "); for(i=1,length(c),M[c[i][1],c[i][2]]=1-M[c[i][1],c[i][2]]) ) \\ Max Alekseyev, Feb 02 2007

Extensions

More terms from Max Alekseyev, Feb 02 2007
Edited by N. J. A. Sloane, Aug 05 2009

A151921 Net gain in number of ON cells at stage n of the cellular automaton described in A079317.

Original entry on oeis.org

0, 1, 4, 0, 12, -8, 20, -8, 44, -40, 52, -40, 76, -64, 100, -64, 172, -168, 180, -168, 204, -192, 228, -192, 300, -288, 324, -288, 396, -360, 468, -360, 684, -680, 692, -680, 716, -704, 740, -704, 812, -800, 836, -800, 908, -872, 980, -872, 1196
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2009, Aug 06 2009

Keywords

Comments

Start with cell (0,0) ON; at each succeeding stage the cells that share exactly one edge with an active cell change their state.

Crossrefs

Formula

If n is even, a(n) = A079315(n) = A151914(n/2); if n is odd, a(n) = A147582((n+1)/2) - A151914((n-1)/2).
First differences of A079317.

A079314 Number of first-quadrant cells (including the two boundaries) born at stage n of the Holladay-Ulam cellular automaton.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 10, 2, 4, 4, 10, 4, 10, 10, 28, 2, 4, 4, 10, 4, 10, 10, 28, 4, 10, 10, 28, 10, 28, 28, 82, 2, 4, 4, 10, 4, 10, 10, 28, 4, 10, 10, 28, 10, 28, 28, 82, 4, 10, 10, 28, 10, 28, 28, 82, 10, 28, 28, 82, 28, 82, 82, 244, 2, 4, 4, 10, 4, 10, 10, 28, 4, 10, 10, 28, 10, 28, 28, 82, 4
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2003

Keywords

Comments

See the main entry for this CA, A147562, for further information.
When I first read the Singmaster MS in 2003 I misunderstood the definition of the CA. In fact once cells are ON they stay ON. The other version, when cells can change state from ON to OFF, is described in A079317. - N. J. A. Sloane, Aug 05 2009
The pattern has 4-fold symmetry; sequence just counts cells in one quadrant.

Examples

			From _Omar E. Pol_, Jul 18 2009: (Start)
If written as a triangle:
  1;
  2;
  2,4;
  2,4,4,10;
  2,4,4,10,4,10,10,28;
  2,4,4,10,4,10,10,28,4,10,10,28,10,28,28,82;
  2,4,4,10,4,10,10,28,4,10,10,28,10,28,28,82,4,10,10,28,10,28,28,82,10,28;...
Rows converge to A151712.
(End)
		

References

  • D. Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.

Crossrefs

Programs

  • Mathematica
    A079314list[nmax_]:=Join[{1},3^(DigitCount[Range[nmax],2,1]-1)+1];A079314list[100] (* Paolo Xausa, Jun 29 2023 *)

Formula

For n > 0, a(n) = 3^(A000120(n)-1) + 1.
For n > 0, a(n) = A147582(n)/4 + 1.
Partial sums give A151922. [Omar E. Pol, Nov 20 2009]

Extensions

Edited by N. J. A. Sloane, Aug 05 2009

A079319 a(0) = 1; for n >= 1, a(n) = 4*a(n-1) - (2^n-1).

Original entry on oeis.org

1, 3, 9, 29, 101, 373, 1429, 5589, 22101, 87893, 350549, 1400149, 5596501, 22377813, 89494869, 357946709, 1431721301, 5726754133, 22906754389, 91626493269, 366504924501, 1466017600853, 5864066209109, 23456256447829
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2003

Keywords

Crossrefs

Programs

  • Mathematica
    A079319list[nmax_]:=LinearRecurrence[{7,-14,8},{1,3,9},nmax+1];A079319list[50] (* Paolo Xausa, Jul 30 2023 *)
  • PARI
    a(n)=if(n<0,0,2^n+(4^n-1)/3)
    
  • Python
    A079319=lambda n: 2**n + 4**n//3 # M. F. Hasler, May 28 2024

Formula

a(n) = 2^n + (4^n-1)/3, n>=0.
a(n) = Sum_{i = 0..2^n - 1} A079314(i).
G.f.: (1-4x+2x^2)/((1-x)(1-2x)(1-4x)).

A079318 a(0) = 1; for n > 0, a(n) = (3^(A000120(n)-1) + 1)/2.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 5, 1, 2, 2, 5, 2, 5, 5, 14, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 2, 5, 5, 14, 5, 14, 14, 41, 5, 14, 14, 41, 14, 41, 41, 122, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 5, 14, 14, 41, 2, 5, 5, 14, 5, 14, 14, 41, 5, 14, 14
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2003

Keywords

Examples

			From _Omar E. Pol_, Jul 18 2009: (Start)
If written as a triangle:
1;
1;
1,2;
1,2,2,5;
1,2,2,5,2,5,5,14;
1,2,2,5,2,5,5,14,2,5,5,14,5,14,14,41;
1,2,2,5,2,5,5,14,2,5,5,14,5,14,14,41,2,5,5,14,5,14,14,41,5,14,14,41,14,41,41,122;
(End)
		

References

  • Alex Fink, Aviezri S. Fraenkel and Carlos Santos, LIM is not slim, International Journal of Game Theory, May 2013
  • David Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.

Crossrefs

Programs

  • Mathematica
    a[n_] := (3^(DigitCount[n, 2, 1] - 1) + 1)/2; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Jul 29 2023 *)

Formula

For n>=1, a(n) mod 2 = A010060(n), the Thue-Morse sequence - Benoit Cloitre, Mar 23 2004
a(n) = Sum_{i+j+k=n, 0<=k<=j<=i<=n} (n!/(i!*j!*k!) mod 2). - Benoit Cloitre, Jul 02 2004

A151914 a(0)=0, a(1)=4; for n>=2, a(n) = (8/3)*(Sum_{i=1..n-1} 3^wt(i)) + 4, where wt() = A000120().

Original entry on oeis.org

0, 4, 12, 20, 44, 52, 76, 100, 172, 180, 204, 228, 300, 324, 396, 468, 684, 692, 716, 740, 812, 836, 908, 980, 1196, 1220, 1292, 1364, 1580, 1652, 1868, 2084, 2732, 2740, 2764, 2788, 2860, 2884, 2956, 3028, 3244, 3268, 3340, 3412, 3628, 3700, 3916, 4132, 4780
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2009, Aug 06 2009

Keywords

Comments

Also, total number of "ON" "subcells" at n-th stage in two of the four wedges of the "Ulam-Warburton" two-dimensional cellular automaton of A147562, but including the central "ON" cell. Assume that every "ON" cell contains four "subcells". - Omar E. Pol, Feb 22 2015

Crossrefs

Formula

a(n) = A079315(2n).
For n>=2, a(n) = 8*A151920(n-2) + 4.
a(n) = 4*A151917(n). - Omar E. Pol, Feb 22 2015

A273409 Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 678", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 6, 11, 28, 37, 66, 87, 152, 177, 254, 291, 404, 453, 602, 687, 944, 1033, 1302, 1403, 1708, 1821, 2162, 2311, 2760, 2921, 3406, 3603, 4196, 4429, 5130, 5471, 6496, 6841, 7878, 8235, 9308, 9677, 10786, 11191, 12408, 12825, 14078, 14531, 15892, 16381, 17850
Offset: 0

Views

Author

Robert Price, May 21 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A079317.

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=678; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)
Showing 1-8 of 8 results.