A079351 a(1)=3; for n > 1, a(n) is the smallest integer greater than a(n-1) consistent with the condition "n is in the sequence if and only if a(n) is congruent to 0 (mod 5)".
3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115
Offset: 1
Links
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Index entries for sequences of the a(a(n)) = 2n family
Formula
a(3*5^k + j) = 5^(k+1) + 3j + 2|j|, k >= 0, -2*5^k <= j < 2*5^k.
Extensions
More terms from Matthew Vandermast, Mar 13 2003
Comments