cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A079368 Where records occur in A079366.

Original entry on oeis.org

1, 9, 19, 22, 25, 26, 29, 66, 6487, 6677, 6678, 55987, 64383
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2003

Keywords

Comments

RECORDS transform of A079366.

Crossrefs

Programs

  • Mathematica
    A079366 = Cases[Import["https://oeis.org/A079366/b079366.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079366], i++,
      If[A079366[[i]] > l, AppendTo[a, i]; l = A079366[[i]]]];
    a (* Robert Price, Mar 14 2020 *)

Extensions

a(9)-a(13) calculated (using PARI) with a precision of 100000 digits and checked with 150000-digit precision. - Lambert Klasen (lambert.klasen(AT)gmx.net), Jun 06 2006

A079367 Records in A079366.

Original entry on oeis.org

11, 17, 23, 97, 107, 127, 409, 58889
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2003

Keywords

Comments

RECORDS transform of A079366.

Crossrefs

Programs

  • Mathematica
    A079366 = Cases[Import["https://oeis.org/A079366/b079366.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079366], i++,
      If[A079366[[i]] > l, l = A079366[[i]]; AppendTo[a, l]]];
    a (* Robert Price, Mar 14 2020 *)

A079385 Records in A079384.

Original entry on oeis.org

5, 53, 71, 379, 541, 1423, 2377, 3343, 9829, 13721
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079384.

Crossrefs

Programs

  • Mathematica
    A079384 = Cases[Import["https://oeis.org/A079384/b079384.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079384], i++,
      If[A079384[[i]] > l, l = A079384[[i]]; AppendTo[a, l]]];
    a (* Robert Price, Mar 15 2020 *)

Extensions

a(4)-a(10) from Robert Price, Mar 15 2020

A079386 Where records occur in A079384.

Original entry on oeis.org

1, 8, 21, 76, 163, 315, 471, 999, 1168, 1238
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

RECORDS transform of A079384.

Crossrefs

Programs

  • Mathematica
    A079384 = Cases[Import["https://oeis.org/A079384/b079384.txt", "Table"], {, }][[All, 2]];
    a = {}; l = 0;
    For[i = 1, i <= Length[A079384], i++,
      If[A079384[[i]] > l, l = A079384[[i]]; AppendTo[a, i]]];
    a (* Robert Price, Mar 15 2020 *)

Extensions

a(4)-a(10) from Robert Price, Mar 15 2020

A079369 Costé prime expansion of e - 2.

Original entry on oeis.org

2, 3, 5, 2, 11, 17, 11, 3, 37, 11, 11, 3, 5, 2, 11, 2, 11, 2, 53, 37, 7, 7, 73, 73, 79, 19, 17, 11, 5, 37, 7, 5, 7, 29, 277, 2903, 607, 211, 29, 11, 739, 9463, 8693, 3907, 307, 23, 223, 59, 37, 11, 2, 41, 23, 11, 3, 23, 7, 5, 5, 2, 11, 5, 7, 7, 5, 2, 5, 2, 5, 3, 67, 41, 223, 31, 107
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(exp(1)-2);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[E - 2] (* G. C. Greubel, Jan 21 2019 *)

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

A079372 Costé prime expansion of sqrt(2) - 1.

Original entry on oeis.org

3, 5, 5, 17, 11, 3, 29, 31, 29, 13, 7, 37, 7, 5, 3, 5, 5, 5, 11, 17, 7, 13, 13, 17, 11, 5, 3, 31, 31, 53, 41, 97, 47, 19, 17, 17, 41, 71, 29, 11, 211, 23, 79, 17, 5, 7, 23, 17, 5, 3, 11, 5, 2, 17, 7, 17, 5, 2, 23, 11, 3, 3, 5, 5, 3, 3, 5
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 200: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 50 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(sqrt(2)-1);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[Sqrt[2] -1] (* G. C. Greubel, Jan 20 2019 *)

A079375 Costé prime expansion of Pi^2 - 9.

Original entry on oeis.org

2, 2, 3, 3, 5, 2, 19, 11, 29, 53, 149, 23, 7, 11, 5, 5, 3, 5, 5, 59, 11, 7, 7, 41, 19, 17, 23, 7, 5, 3, 7, 3, 11, 3, 3, 5, 2, 5, 3, 3, 53, 11, 5, 3, 41, 13, 29, 97, 13, 11, 2, 11, 5, 7, 7, 17, 5, 11, 3, 3, 7, 23, 53, 11, 5, 17, 5, 7, 3, 17
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 200: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 50 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(Pi^2 - 9);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[Pi^2 -9] (* G. C. Greubel, Jan 20 2019 *)

A079378 Costé prime expansion of (sqrt(5)-1)/2.

Original entry on oeis.org

2, 5, 7, 5, 5, 2, 11, 5, 2, 13, 11, 5, 5, 5, 5, 2, 5, 3, 5, 11, 2, 79, 37, 11, 5, 3, 7, 17, 59, 23, 11, 2, 17, 7, 3, 7, 7, 383, 337, 67, 13, 19, 47, 23, 41, 17, 17, 13, 67, 71, 47, 17, 11, 19, 73, 53, 17, 13, 37, 19, 11, 5, 13, 29, 43, 47, 17, 5, 5, 11, 3, 3, 17, 5, 97, 29, 11, 3, 3, 3, 7
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F((sqrt(5)-1)/2);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[(Sqrt[5] -1)/2] (* G. C. Greubel, Jan 20 2019 *)

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

A079381 Costé prime expansion of Euler's constant gamma (A001620).

Original entry on oeis.org

2, 7, 13, 19, 89, 23, 11, 131, 73, 43, 37, 7, 11, 3, 3, 3, 3, 3, 5, 2, 7, 61, 251, 41, 13, 11, 7, 23, 29, 5, 13, 11, 3, 67, 29, 7, 5, 5, 2, 17, 5, 23, 7, 11, 2, 31, 29, 5, 5, 5, 3, 3, 5, 11, 5, 7, 7, 29, 17, 5, 2, 41, 13, 13, 11, 199, 157, 101, 37, 7, 127, 29, 11, 3, 3, 5, 17, 5, 7, 5, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(gamma);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[EulerGamma] (* G. C. Greubel, Jan 20 2019 *)

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

A079384 Costé prime expansion of 2^(1/3) - 1.

Original entry on oeis.org

5, 5, 3, 3, 3, 3, 3, 53, 13, 29, 7, 5, 11, 3, 7, 5, 11, 5, 7, 5, 71, 67, 17, 11, 5, 5, 37, 11, 2, 11, 11, 3, 11, 5, 5, 11, 7, 11, 3, 3, 3, 3, 3, 3, 11, 7, 7, 7, 5, 23, 17, 7, 17, 13, 41, 53, 23, 7, 7, 5, 5, 5, 5, 2, 7, 3, 53, 11, 3, 7, 5, 2, 7, 17, 17, 379, 107, 41, 19, 11, 5, 5, 2, 5, 5, 3, 11, 2, 29, 11, 7, 7, 13, 29, 7, 53, 53, 17, 11, 3
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(2^(1/3) - 1);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_]:= Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[Surd[2, 3] - 1] (* G. C. Greubel, Jan 20 2019 *)

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003
Showing 1-10 of 27 results. Next