A079366 Costé prime expansion of Pi - 3.
11, 2, 11, 5, 5, 2, 5, 3, 17, 11, 3, 3, 11, 3, 3, 11, 5, 3, 23, 7, 5, 97, 29, 37, 107, 127, 29, 17, 409, 127, 11, 29, 5, 67, 19, 43, 31, 19, 103, 59, 29, 7, 3, 11, 11, 5, 47, 29, 11, 3, 5, 5, 3, 17, 5, 29, 11, 3, 3, 3, 3, 5, 5, 61, 151, 58889, 1877, 983, 757, 163
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2000
- A. Costé, Sur un système fibré lié à la suite des nombres premiers, Exper. Math., 11 (2002), 383-405.
- Index entries for sequences related to Engel expansions
Programs
-
Maple
Digits := 200: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 50 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(Pi-3);
-
Mathematica
$MaxExtraPrecision = 40; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 70, i++, AppendTo[t1, p = P[y]]; y = p*y-1]; t1]; F[Pi-3] (* Jean-François Alcover, Dec 16 2013, translated from Maple *)
Comments