cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079414 a(n) = 4*n^4 - 3*n^2.

Original entry on oeis.org

1, 52, 297, 976, 2425, 5076, 9457, 16192, 26001, 39700, 58201, 82512, 113737, 153076, 201825, 261376, 333217, 418932, 520201, 638800, 776601, 935572, 1117777, 1325376, 1560625, 1825876, 2123577, 2456272, 2826601, 3237300
Offset: 1

Views

Author

Kit Vongmahadlek (kit119(AT)yahoo.com), Jan 07 2003

Keywords

Crossrefs

Cf. A193250 (first differences).

Programs

  • GAP
    List([1..40], n -> 4*n^4-3*n^2); # G. C. Greubel, Jan 19 2019
  • Magma
    [4*n^4-3*n^2: n in [1..40]]; // G. C. Greubel, Jan 19 2019
    
  • Mathematica
    Table[4*n^4-3*n^2, {n,1,40}] (* G. C. Greubel, Jan 19 2019 *)
  • PARI
    vector(40, n, 4*n^4-3*n^2) \\ G. C. Greubel, Jan 19 2019
    
  • Sage
    [4*n^4-3*n^2 for n in (1..40)] # G. C. Greubel, Jan 19 2019
    

Formula

a(n) = n *Sum_{k=0..n-1} (-1)^k * (2*n-2*k-1)^3.
a(n+1) = (n+1) * ((2n+1)^3 - a(n)/n).
From G. C. Greubel, Jan 19 2019: (Start)
G.f.: x*(1 +47*x +47*x^2 +x^3)/(1-x)^5.
E.g.f.: x*(1 +25*x +24*x^2 +4*x^3)*exp(x). (End)

Extensions

Edited by Don Reble, Nov 02 2005