cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144139 Chebyshev polynomial of the second kind U(4,n).

Original entry on oeis.org

1, 5, 209, 1189, 3905, 9701, 20305, 37829, 64769, 104005, 158801, 232805, 330049, 454949, 612305, 807301, 1045505, 1332869, 1675729, 2080805, 2555201, 3106405, 3742289, 4471109, 5301505, 6242501, 7303505, 8494309, 9825089, 11306405
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [16*n^4-12*n^2+1: n in [0..40]]; // Vincenzo Librandi, May 29 2014
  • Mathematica
    lst={}; Do[AppendTo[lst, ChebyshevU[4, n]], {n, 0, 9^2}]; lst
    CoefficientList[Series[(1 + 194 x^2 + 184 x^3 + 5 x^4)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *)

Formula

G.f.: (1 + 194*x^2 + 184*x^3 + 5*x^4)/(1 - x)^5. - Vincenzo Librandi, May 29 2014
a(n) = 16*n^4-12*n^2+1 = (4*n^2-2*n-1)*(4*n^2+2*n-1). - Vincenzo Librandi, May 29 2014
From Klaus Purath, Sep 08 2022: (Start)
a(n) = A165900(2*n)*A165900(2*n+1).
a(n) = A057722(2*n).
a(n) = 4*(Sum_{i=1..n} A193250(i)) + 1 = 4*A079414(n) + 1.
(End)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Aug 04 2025

Extensions

Changed offset from 1 to 0 by Vincenzo Librandi, May 29 2014

A130284 Integers j > 0 such that (2j+1)^2(m^2-1) + 1 is a square for some integer m > 1.

Original entry on oeis.org

7, 17, 31, 49, 71, 97, 104, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 594, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1455, 1457, 1567, 1681, 1799, 1921, 1952, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049
Offset: 1

Views

Author

M. F. Hasler, May 24 2007, May 29 2007

Keywords

Comments

All terms > 4 in A130283 are odd squares, but not all odd squares are in that sequence: This sequence here gives the exceptions as (2a(n)+1)^2. The sequence consists mainly of the subsequences: (1) A056220(k) = 2k^2-1 with k>1: {7,17,31,49,...}, for which m=k gives (1+2*A056220(k))^2(k^2-1)+1 = k^2(4k^2-3)^2; (2) 2*A079414(k) = 2k^2(4k^2-3) with k>1: {104,594,1952,4850,...}, for which m=k gives (1+4*A079414(k))^2(k^2-1)+1 = k^2(16k^4-20k^2+5)^2. A third subsequence starts {1455,20195,...}; up to 20195, all terms are in one of these subsequences.

Examples

			Up to k=17, a(k)=P[1](k+1) with P[1] = 2x^2 - 1, A130280(a(k)) = k+1.
a(18) = P[2](2) < P[1](19) with P[2] = 2x^2*(4x^2 - 3), A130280(a(18)) = 2.
a(106) = P[1](100) < a(107) = P[3](3) < a(108) = P[4](2) < a(109) = P[1](101).
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Reduce[m>1 && k>1 && (2n+1)^2*(m^2-1)+1 == k^2, {m, k}, Integers];
    Reap[For[n=1, n <= 5000, n++, If[r[n] =!= False, Print[n]; Sow[n]]]][[2,1]] (* Jean-François Alcover, May 12 2017 *)
  • PARI
    A130284( LIM=9999, START=1 )={ local(N); for( n=START, LIM, N=(2*n+1)^2; for( m=2, sqrtint(n>>1+1), if(!issquare( N*(m^2-1)+1 ), next); print1(n", "); next(2))) }
    
  • PARI
    {Q(k,x=x)=if(m>0,(4*x^2-2)*Q(k-1,x)-Q(k-2,x),1)} {P(k,x=x)=if(type(x=(x^2*Q(k,x)^2-1)/(x^2-1))!="t_POL",sqrtint(x)\2,((-1)^k*Pol(sqrt(x))-1)/2)}

Formula

A130284 = { P[k](m) ; k=1,2,3,..., m=2,3,4,... } where P[k] = (sqrt((X^2 Q[k]^2 - 1)/(X^2 - 1))-1)/2 and Q[0] = Q[-1] = 1, Q[k+1] = (4X^2 -2)*Q[k] - Q[k-1]. Furthermore, (2P[k](m)+1)^2 (m^2 - 1)+1 = m^2 Q[k](m)^2, thus A130280(P[k](m)) <= m. So far, no case is known where we have strict inequality.

A193250 Small rhombicuboctahedron with faces of centered polygons.

Original entry on oeis.org

1, 51, 245, 679, 1449, 2651, 4381, 6735, 9809, 13699, 18501, 24311, 31225, 39339, 48749, 59551, 71841, 85715, 101269, 118599, 137801, 158971, 182205, 207599, 235249, 265251, 297701, 332695, 370329, 410699, 453901, 500031, 549185, 601459, 656949, 715751
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a small rhombicuboctahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered squares (A001844)]

Crossrefs

Cf. A079414 (partial sums).

Programs

  • Excel
    copy and paste the following formula   =16 *ROW()^3-24 *ROW()^2+10*ROW()-1 fill down to desired size.
    
  • Magma
    [16*n^3-24*n^2+10*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    Table[16n^3-24n^2+10n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,51,245,679},40] (* Harvey P. Dale, Aug 27 2011 *)
  • PARI
    vector(40, n, 16*n^3-24*n^2+10*n-1) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 16*n^3 - 24*n^2 + 10*n - 1.
G.f.: x*(1+x)*(x^2 + 46*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=51, a(2)=245, a(3)=679. - Harvey P. Dale, Aug 27 2011
E.g.f.: 1 + (-1 + 2*x + 24*x^2 + 16*x^3)*exp(x). - G. C. Greubel, Nov 10 2018
Showing 1-3 of 3 results.