cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A323182 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Chebyshev polynomial of the second kind U_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 2, -1, 1, 4, 3, 0, 1, 6, 15, 4, 1, 1, 8, 35, 56, 5, 0, 1, 10, 63, 204, 209, 6, -1, 1, 12, 99, 496, 1189, 780, 7, 0, 1, 14, 143, 980, 3905, 6930, 2911, 8, 1, 1, 16, 195, 1704, 9701, 30744, 40391, 10864, 9, 0, 1, 18, 255, 2716, 20305, 96030, 242047, 235416, 40545, 10, -1
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2019

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 2,    4,     6,      8,     10,      12, ...
  -1, 3,   15,    35,     63,     99,     143, ...
   0, 4,   56,   204,    496,    980,    1704, ...
   1, 5,  209,  1189,   3905,   9701,   20305, ...
   0, 6,  780,  6930,  30744,  96030,  241956, ...
  -1, 7, 2911, 40391, 242047, 950599, 2883167, ...
		

Crossrefs

Mirror of A228161.
Columns 0-19 give A056594, A000027(n+1), A001353(n+1), A001109(n+1), A001090(n+1), A004189(n+1), A004191, A007655(n+2), A077412, A049660(n+1), A075843(n+1), A077421, A077423, A097309, A097311, A097313, A029548, A029547, A144128(n+1), A078987.
Main diagonal gives A323118.
Cf. A179943, A322836 (Chebyshev polynomial of the first kind).

Programs

  • PARI
    T(n,k)  = polchebyshev(n, 2, k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Jan 07 2019
    
  • PARI
    T(n, k) = sum(j=0, n, (2*k-2)^j*binomial(n+1+j, 2*j+1)); \\ Seiichi Manyama, Mar 03 2021

Formula

T(0,k) = 1, T(1,k) = 2 * k and T(n,k) = 2 * k * T(n-1,k) - T(n-2,k) for n > 1.
T(n, k) = Sum_{j=0..n} (2*k-2)^j * binomial(n+1+j,2*j+1). - Seiichi Manyama, Mar 03 2021

A144138 Chebyshev polynomial of the second kind U(3,n).

Original entry on oeis.org

0, 4, 56, 204, 496, 980, 1704, 2716, 4064, 5796, 7960, 10604, 13776, 17524, 21896, 26940, 32704, 39236, 46584, 54796, 63920, 74004, 85096, 97244, 110496, 124900, 140504, 157356, 175504, 194996, 215880, 238204, 262016, 287364, 314296, 342860, 373104, 405076
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [8*n^3-4*n: n in [0..40]]; // Vincenzo Librandi, May 29 2014
  • Mathematica
    Table[ChebyshevU[3,n], {n,0,100}] (* and *) Table[4n*(2*n^2-1), {n,0,100}]
    CoefficientList[Series[4 x (1 + 10 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,4,56,204},40] (* Harvey P. Dale, Dec 23 2022 *)

Formula

G.f.: 4*x*(1 + 10*x + x^2)/(1 - x)^4. - Vincenzo Librandi, May 29 2014
a(n) = 4*n*(2*n^2-1). - Vincenzo Librandi, May 29 2014

A242850 32*n^5 - 32*n^3 + 6*n.

Original entry on oeis.org

0, 6, 780, 6930, 30744, 96030, 241956, 526890, 1032240, 1866294, 3168060, 5111106, 7907400, 11811150, 17122644, 24192090, 33423456, 45278310, 60279660, 79015794, 102144120, 130395006, 164575620, 205573770, 254361744, 312000150, 379641756, 458535330, 550029480, 655576494
Offset: 0

Views

Author

Vincenzo Librandi, May 29 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(5,n).

Crossrefs

Programs

  • Magma
    [32*n^5-32*n^3+6*n: n in [0..40]];
  • Mathematica
    Table[32 n^5 - 32 n^3 + 6 n, {n, 0, 40}] (* or *) Table[ChebyshevU[5, n], {n, 0, 40}]

Formula

G.f.: x*(6 + 744*x + 2340*x^2 + 744*x^3 + 6*x^4)/(1 - x)^6.
a(n) = 2*n*(2*n-1)*(2*n+1)*(4*n^2-3).

Extensions

Edited by Bruno Berselli, May 29 2014

A242851 64*n^6 - 80*n^4 + 24*n^2 - 1.

Original entry on oeis.org

-1, 7, 2911, 40391, 242047, 950599, 2883167, 7338631, 16451071, 33489287, 63202399, 112211527, 189447551, 306634951, 478821727, 724955399, 1068505087, 1538129671, 2168392031, 3000519367, 4083209599, 5473483847, 7237584991, 9451922311, 12204062207, 15593764999
Offset: 0

Views

Author

Vincenzo Librandi, May 29 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(6,n).

Crossrefs

Programs

  • Magma
    [64*n^6-80*n^4+24*n^2-1: n in [0..40]];
  • Mathematica
    Table[64 n^6 - 80 n^4 + 24 n^2 - 1, {n, 0, 40}] (* or *) Table[ChebyshevU[6, n], {n, 0, 40}]

Formula

G.f.: (-1 + 14*x + 2841*x^2 + 20196*x^3 + 20161*x^4 + 2862*x^5 + 7*x^6)/(1 - x)^7.
a(n) = (8*n^3-4*n^2-4*n+1)*(8*n^3+4*n^2-4*n-1).

Extensions

Edited by Bruno Berselli, May 29 2014

A242852 128*n^7-192*n^5+80*n^3-8*n.

Original entry on oeis.org

0, 8, 10864, 235416, 1905632, 9409960, 34356048, 102213944, 262184896, 600940872, 1260879920, 2463542488, 4538833824, 7960697576, 13389885712, 21724469880, 34158739328, 52251130504, 78001833456, 113940720152, 163226239840, 229755926568, 318289163984, 434582852536
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(7,n).

Crossrefs

Programs

  • Magma
    [128*n^7-192*n^5+80*n^3-8*n: n in [0..30]];
  • Mathematica
    Table[ChebyshevU[7, n], {n, 0, 30}] (* or *) Table[128 n^7 - 192 n^5 + 80 n^3 - 8 n, {n, 0, 30}]

Formula

G.f.: (8*x + 10800*x^2 + 148728*x^3 + 326048*x^4 + 148728*x^5 + 10800*x^6 + 8*x^7)/(1-x)^8.
a(n) = 8*n*(2*n^2-1)*(8*n^4-8*n^2+1).

A242853 256*n^8 - 448*n^6 + 240*n^4 - 40*n^2 + 1.

Original entry on oeis.org

1, 9, 40545, 1372105, 15003009, 93149001, 409389409, 1423656585, 4178507265, 10783446409, 25154396001, 54085723209, 108742564225, 206671502025, 374437978209, 651009141001, 1092011153409, 1775000307465, 2805897612385, 4326746846409, 6524966384001, 9644275432009
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(8,n).

Crossrefs

Programs

  • Magma
    [256*n^8-448*n^6+240*n^4-40*n^2+1: n in [0..30]];
  • Mathematica
    Table[ChebyshevU[8, n], {n, 0, 30}] (* or *) Table[256 n^8 - 448 n^6 + 240 n^4 - 40 n^2 + 1, {n, 0, 30}]

Formula

G.f.: (1 + 40500*x^2 + 1007440*x^3 + 4113054*x^4 + 4112928*x^5 + 1007524*x^6 + 40464*x^7 + 9*x^8)/(1 - x)^9.
a(n) = (2*n - 1)*(2*n + 1)*(8*n^3 - 6*n - 1) (8*n^3 - 6*n + 1).

A242854 a(n) = 512*n^9 - 1024*n^7 + 672*n^5 - 160*n^3 + 10*n.

Original entry on oeis.org

0, 10, 151316, 7997214, 118118440, 922080050, 4878316860, 19828978246, 66593931344, 193501094490, 501827040100, 1187422368110, 2605282707576, 5365498355074, 10470873504140, 19508549760150, 34910198169760, 60297759323306, 100934312212404, 164302439443390
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(9,n).

Crossrefs

Programs

  • Magma
    [512*n^9-1024*n^7+672*n^5-160*n^3+10*n: n in [0..20]];
  • Maple
    A242854:=n->512*n^9 - 1024*n^7 + 672*n^5 - 160*n^3 + 10*n: seq(A242854(n), n=0..30); # Wesley Ivan Hurt, Feb 04 2017
  • Mathematica
    Table[ChebyshevU[9, n], {n, 0, 20}] (* or *) Table[512 n^9 - 1024 n^7 + 672 n^5 - 160 n^3 + 10 n, {n, 0, 20}]

Formula

G.f.: x*(10 + 151216*x + 6484504*x^2 + 44954320*x^3 + 82614460*x^4 + 44954320*x^5 + 6484504*x^6 + 151216*x^7 + 10*x^8)/(1 - x)^10.
a(n) = 2*n*(4*n^2-2*n-1)*(4*n^2+2*n-1)*(16*n^4-20*n^2+5).

A243130 1024*n^10 - 2304*n^8 + 1792*n^6 - 560*n^4 + 60*n^2 - 1.

Original entry on oeis.org

-1, 11, 564719, 46611179, 929944511, 9127651499, 58130412911, 276182038859, 1061324394239, 3472236254411, 10011386405999, 26069206375211, 62418042417599, 139296285729899, 292810020137711, 584605483663499, 1116034330278911, 2048348816684939, 3630829342034159
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(10,n).

Crossrefs

Programs

  • Magma
    [1024*n^10-2304*n^8+1792*n^6-560*n^4+60*n^2-1: n in [0..20]];
  • Mathematica
    Table[ChebyshevU[10, n], {n, 0, 20}] (* or *) Table[1024 n^10 - 2304 n^8 + 1792 n^6 - 560 n^4 + 60 n^2 - 1, {n, 0, 20}]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{-1,11,564719,46611179,929944511,9127651499,58130412911,276182038859,1061324394239,3472236254411,10011386405999},20] (* Harvey P. Dale, Dec 10 2023 *)

Formula

G.f.: (-1 + 22*x + 564543*x^2 + 40400040*x^3 + 448278942*x^4 + 1368702180*x^5 + 1368701718*x^6 + 448279272*x^7 + 40399875*x^8 + 564598*x^9 + 11*x^10)/(1 - x)^11.
a(n) = (32*n^5 - 16*n^4 - 32*n^3 +12*n^2 + 6*n - 1)*(32*n^5 + 16*n^4 - 32*n^3 -12*n^2 + 6*n + 1).
Showing 1-8 of 8 results.