cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A007588 Stella octangula numbers: a(n) = n*(2*n^2 - 1).

Original entry on oeis.org

0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, 5474, 6735, 8176, 9809, 11646, 13699, 15980, 18501, 21274, 24311, 27624, 31225, 35126, 39339, 43876, 48749, 53970, 59551, 65504, 71841, 78574, 85715, 93276, 101269, 109706, 118599, 127960
Offset: 0

Views

Author

Keywords

Comments

Also as a(n)=(1/6)*(12*n^3-6*n), n>0: structured hexagonal anti-diamond numbers (vertex structure 13) (Cf. A005915 = alternate vertex; A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The only known square stella octangula number for n>1 is a(169) = 169*(2*169^2 - 1) = 9653449 = 3107^2. - Alexander Adamchuk, Jun 02 2008
Ljunggren proved that 9653449 = (13*239)^2 is the only square stella octangula number for n>1. See A229384 and the Wikipedia link. - Jonathan Sondow, Sep 30 2013
4*A007588 = A144138(ChebyshevU[3,n]). - Vladimir Joseph Stephan Orlovsky, Jun 30 2011
If A016813 is regarded as a regular triangle (with leading terms listed in A001844), a(n) provides the row sums of this triangle: 1, 5+9=14, 13+17+21=51 and so on. - J. M. Bergot, Jul 05 2013
Shares its digital root, A267017, with n*(n^2 + 1)/2 ("sum of the next n natural numbers" see A006003). - Peter M. Chema, Aug 28 2016

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 51.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
  • W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = Dy^4, Avh. Norske Vid. Akad. Oslo. I. 1942 (5): 27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Backwards differences give star numbers A003154: A003154(n)=a(n)-a(n-1).
1/12*t*(n^3-n)+ n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Cf. A001653 = Numbers n such that 2*n^2 - 1 is a square.
a(169) = (A229384(3)*A229384(4))^2.

Programs

Formula

G.f.: x*(1+10*x+x^2)/(1-x)^4.
a(n) = n*A056220(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3. - Harvey P. Dale, Sep 16 2011
From Ilya Gutkovskiy, Jul 02 2016: (Start)
E.g.f.: x*(1 + 6*x + 2*x^2)*exp(x).
Dirichlet g.f.: 2*zeta(s-3) - zeta(s-1). (End)
a(n) = A004188(n) + A135503(n). - Miquel Cerda, Dec 25 2016
a(n) = A061317(n) - A005843(n) = A062392(n) - A062392(n-1). - J.S. Seneschal, Jul 01 2025

Extensions

In the formula given in the 1995 Encyclopedia of Integer Sequences, the second 2 should be an exponent.

A323182 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Chebyshev polynomial of the second kind U_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 2, -1, 1, 4, 3, 0, 1, 6, 15, 4, 1, 1, 8, 35, 56, 5, 0, 1, 10, 63, 204, 209, 6, -1, 1, 12, 99, 496, 1189, 780, 7, 0, 1, 14, 143, 980, 3905, 6930, 2911, 8, 1, 1, 16, 195, 1704, 9701, 30744, 40391, 10864, 9, 0, 1, 18, 255, 2716, 20305, 96030, 242047, 235416, 40545, 10, -1
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2019

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 2,    4,     6,      8,     10,      12, ...
  -1, 3,   15,    35,     63,     99,     143, ...
   0, 4,   56,   204,    496,    980,    1704, ...
   1, 5,  209,  1189,   3905,   9701,   20305, ...
   0, 6,  780,  6930,  30744,  96030,  241956, ...
  -1, 7, 2911, 40391, 242047, 950599, 2883167, ...
		

Crossrefs

Mirror of A228161.
Columns 0-19 give A056594, A000027(n+1), A001353(n+1), A001109(n+1), A001090(n+1), A004189(n+1), A004191, A007655(n+2), A077412, A049660(n+1), A075843(n+1), A077421, A077423, A097309, A097311, A097313, A029548, A029547, A144128(n+1), A078987.
Main diagonal gives A323118.
Cf. A179943, A322836 (Chebyshev polynomial of the first kind).

Programs

  • PARI
    T(n,k)  = polchebyshev(n, 2, k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Jan 07 2019
    
  • PARI
    T(n, k) = sum(j=0, n, (2*k-2)^j*binomial(n+1+j, 2*j+1)); \\ Seiichi Manyama, Mar 03 2021

Formula

T(0,k) = 1, T(1,k) = 2 * k and T(n,k) = 2 * k * T(n-1,k) - T(n-2,k) for n > 1.
T(n, k) = Sum_{j=0..n} (2*k-2)^j * binomial(n+1+j,2*j+1). - Seiichi Manyama, Mar 03 2021

A242850 32*n^5 - 32*n^3 + 6*n.

Original entry on oeis.org

0, 6, 780, 6930, 30744, 96030, 241956, 526890, 1032240, 1866294, 3168060, 5111106, 7907400, 11811150, 17122644, 24192090, 33423456, 45278310, 60279660, 79015794, 102144120, 130395006, 164575620, 205573770, 254361744, 312000150, 379641756, 458535330, 550029480, 655576494
Offset: 0

Views

Author

Vincenzo Librandi, May 29 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(5,n).

Crossrefs

Programs

  • Magma
    [32*n^5-32*n^3+6*n: n in [0..40]];
  • Mathematica
    Table[32 n^5 - 32 n^3 + 6 n, {n, 0, 40}] (* or *) Table[ChebyshevU[5, n], {n, 0, 40}]

Formula

G.f.: x*(6 + 744*x + 2340*x^2 + 744*x^3 + 6*x^4)/(1 - x)^6.
a(n) = 2*n*(2*n-1)*(2*n+1)*(4*n^2-3).

Extensions

Edited by Bruno Berselli, May 29 2014

A242851 64*n^6 - 80*n^4 + 24*n^2 - 1.

Original entry on oeis.org

-1, 7, 2911, 40391, 242047, 950599, 2883167, 7338631, 16451071, 33489287, 63202399, 112211527, 189447551, 306634951, 478821727, 724955399, 1068505087, 1538129671, 2168392031, 3000519367, 4083209599, 5473483847, 7237584991, 9451922311, 12204062207, 15593764999
Offset: 0

Views

Author

Vincenzo Librandi, May 29 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(6,n).

Crossrefs

Programs

  • Magma
    [64*n^6-80*n^4+24*n^2-1: n in [0..40]];
  • Mathematica
    Table[64 n^6 - 80 n^4 + 24 n^2 - 1, {n, 0, 40}] (* or *) Table[ChebyshevU[6, n], {n, 0, 40}]

Formula

G.f.: (-1 + 14*x + 2841*x^2 + 20196*x^3 + 20161*x^4 + 2862*x^5 + 7*x^6)/(1 - x)^7.
a(n) = (8*n^3-4*n^2-4*n+1)*(8*n^3+4*n^2-4*n-1).

Extensions

Edited by Bruno Berselli, May 29 2014

A242852 128*n^7-192*n^5+80*n^3-8*n.

Original entry on oeis.org

0, 8, 10864, 235416, 1905632, 9409960, 34356048, 102213944, 262184896, 600940872, 1260879920, 2463542488, 4538833824, 7960697576, 13389885712, 21724469880, 34158739328, 52251130504, 78001833456, 113940720152, 163226239840, 229755926568, 318289163984, 434582852536
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(7,n).

Crossrefs

Programs

  • Magma
    [128*n^7-192*n^5+80*n^3-8*n: n in [0..30]];
  • Mathematica
    Table[ChebyshevU[7, n], {n, 0, 30}] (* or *) Table[128 n^7 - 192 n^5 + 80 n^3 - 8 n, {n, 0, 30}]

Formula

G.f.: (8*x + 10800*x^2 + 148728*x^3 + 326048*x^4 + 148728*x^5 + 10800*x^6 + 8*x^7)/(1-x)^8.
a(n) = 8*n*(2*n^2-1)*(8*n^4-8*n^2+1).

A242853 256*n^8 - 448*n^6 + 240*n^4 - 40*n^2 + 1.

Original entry on oeis.org

1, 9, 40545, 1372105, 15003009, 93149001, 409389409, 1423656585, 4178507265, 10783446409, 25154396001, 54085723209, 108742564225, 206671502025, 374437978209, 651009141001, 1092011153409, 1775000307465, 2805897612385, 4326746846409, 6524966384001, 9644275432009
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(8,n).

Crossrefs

Programs

  • Magma
    [256*n^8-448*n^6+240*n^4-40*n^2+1: n in [0..30]];
  • Mathematica
    Table[ChebyshevU[8, n], {n, 0, 30}] (* or *) Table[256 n^8 - 448 n^6 + 240 n^4 - 40 n^2 + 1, {n, 0, 30}]

Formula

G.f.: (1 + 40500*x^2 + 1007440*x^3 + 4113054*x^4 + 4112928*x^5 + 1007524*x^6 + 40464*x^7 + 9*x^8)/(1 - x)^9.
a(n) = (2*n - 1)*(2*n + 1)*(8*n^3 - 6*n - 1) (8*n^3 - 6*n + 1).

A242854 a(n) = 512*n^9 - 1024*n^7 + 672*n^5 - 160*n^3 + 10*n.

Original entry on oeis.org

0, 10, 151316, 7997214, 118118440, 922080050, 4878316860, 19828978246, 66593931344, 193501094490, 501827040100, 1187422368110, 2605282707576, 5365498355074, 10470873504140, 19508549760150, 34910198169760, 60297759323306, 100934312212404, 164302439443390
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(9,n).

Crossrefs

Programs

  • Magma
    [512*n^9-1024*n^7+672*n^5-160*n^3+10*n: n in [0..20]];
  • Maple
    A242854:=n->512*n^9 - 1024*n^7 + 672*n^5 - 160*n^3 + 10*n: seq(A242854(n), n=0..30); # Wesley Ivan Hurt, Feb 04 2017
  • Mathematica
    Table[ChebyshevU[9, n], {n, 0, 20}] (* or *) Table[512 n^9 - 1024 n^7 + 672 n^5 - 160 n^3 + 10 n, {n, 0, 20}]

Formula

G.f.: x*(10 + 151216*x + 6484504*x^2 + 44954320*x^3 + 82614460*x^4 + 44954320*x^5 + 6484504*x^6 + 151216*x^7 + 10*x^8)/(1 - x)^10.
a(n) = 2*n*(4*n^2-2*n-1)*(4*n^2+2*n-1)*(16*n^4-20*n^2+5).

A243130 1024*n^10 - 2304*n^8 + 1792*n^6 - 560*n^4 + 60*n^2 - 1.

Original entry on oeis.org

-1, 11, 564719, 46611179, 929944511, 9127651499, 58130412911, 276182038859, 1061324394239, 3472236254411, 10011386405999, 26069206375211, 62418042417599, 139296285729899, 292810020137711, 584605483663499, 1116034330278911, 2048348816684939, 3630829342034159
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2014

Keywords

Comments

Chebyshev polynomial of the second kind U(10,n).

Crossrefs

Programs

  • Magma
    [1024*n^10-2304*n^8+1792*n^6-560*n^4+60*n^2-1: n in [0..20]];
  • Mathematica
    Table[ChebyshevU[10, n], {n, 0, 20}] (* or *) Table[1024 n^10 - 2304 n^8 + 1792 n^6 - 560 n^4 + 60 n^2 - 1, {n, 0, 20}]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{-1,11,564719,46611179,929944511,9127651499,58130412911,276182038859,1061324394239,3472236254411,10011386405999},20] (* Harvey P. Dale, Dec 10 2023 *)

Formula

G.f.: (-1 + 22*x + 564543*x^2 + 40400040*x^3 + 448278942*x^4 + 1368702180*x^5 + 1368701718*x^6 + 448279272*x^7 + 40399875*x^8 + 564598*x^9 + 11*x^10)/(1 - x)^11.
a(n) = (32*n^5 - 16*n^4 - 32*n^3 +12*n^2 + 6*n - 1)*(32*n^5 + 16*n^4 - 32*n^3 -12*n^2 + 6*n + 1).
Showing 1-8 of 8 results.