cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079427 Least m > n having the same number of divisors as n, a(1) = 1.

Original entry on oeis.org

1, 3, 5, 9, 7, 8, 11, 10, 25, 14, 13, 18, 17, 15, 21, 81, 19, 20, 23, 28, 22, 26, 29, 30, 49, 27, 33, 32, 31, 40, 37, 44, 34, 35, 38, 100, 41, 39, 46, 42, 43, 54, 47, 45, 50, 51, 53, 80, 121, 52, 55, 63, 59, 56, 57, 66, 58, 62, 61, 72, 67, 65, 68, 729, 69, 70, 71, 75, 74, 78, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 08 2003

Keywords

Comments

tau(a(n)) = tau(n) and tau(i) <> tau(n), n < i < a(n) (tau = A000005);

Examples

			Sets of divisors for n=10,11,12,13 and 14: D(10)={1,2,5,10}, D(11)={1,11}, D(12)={1,2,3,4,6,12}, D(13)={1,13}, D(14)={1,2,7,14}: therefore a(10)=14 (#D(10)=#D(14)).
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{m = n+1, d=DivisorSigma[0, n]}, While[DivisorSigma[0, m] != d, m++]; m]; Array[a, 100] (* Amiram Eldar, Feb 03 2020 *)
  • PARI
    a(n) = if (n==1, 1, my(m=n+1, nd=numdiv(n)); while(numdiv(m) != nd, m++); m); \\ Michel Marcus, Sep 14 2021
    
  • Python
    from sympy import divisors
    def a(n):
        if n == 1: return 1
        divisorsn, m = len(divisors(n)), n + 1
        while len(divisors(m)) != divisorsn: m += 1
        return m
    print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Sep 14 2021

Formula

a(A000040(k)) = A079428(A000040(k)) = A000040(k+1), as A000005(p)=2 for primes p.
a(n) = A171937(n) + n. - Ridouane Oudra, Sep 14 2021