A079447 Primes p such that there is an integer k satisfying p = floor(k*H(k)) where H(k) denotes the k-th harmonic number (i.e., H(k) = 1 + 1/2 + 1/3 + ... + 1/k).
3, 5, 11, 29, 37, 41, 67, 71, 109, 181, 197, 241, 263, 269, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 587, 593, 599, 631, 701, 727, 773, 911, 971, 991, 1039, 1093, 1223, 1237, 1279, 1307, 1321, 1433, 1447, 1489, 1553, 1567, 1667, 1747, 1783
Offset: 1
Keywords
Examples
10*Sum_{j=1..10} 1/j = 29.2896825..., hence 29 = floor(10*H(10)) and 29 is in the sequence.
Extensions
Data corrected by Sean A. Irvine, Aug 13 2025