A079513 Triangular array (a Riordan array) related to tennis ball problem, read by rows.
1, 0, 1, 1, 1, 1, 0, 3, 2, 1, 6, 6, 6, 3, 1, 0, 22, 16, 10, 4, 1, 53, 53, 53, 31, 15, 5, 1, 0, 211, 158, 105, 52, 21, 6, 1, 554, 554, 554, 343, 185, 80, 28, 7, 1, 0, 2306, 1752, 1198, 644, 301, 116, 36, 8, 1, 6362, 6362, 6362, 4056, 2304, 1106, 462, 161, 45, 9, 1
Offset: 0
Examples
Triangle starts 1; 0, 1; 1, 1, 1; 0, 3, 2, 1; 6, 6, 6, 3, 1; 0, 22, 16, 10, 4, 1; 53, 53, 53, 31, 15, 5, 1; 0, 211, 158, 105, 52, 21, 6, 1; 554, 554, 554, 343, 185, 80, 28, 7, 1; 0, 2306, 1752, 1198, 644, 301, 116, 36, 8, 1; 6362, 6362, 6362, 4056, 2304, 1106, 462, 161, 45, 9, 1;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (Table A.2).
Crossrefs
Programs
-
Mathematica
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r; Table[SeriesCoefficient[Series[g[t, k], {t, 0, n}], n], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 16 2019 *)
Extensions
Edited and more terms added by Ralf Stephan, Dec 29 2013
Comments