A079513
Triangular array (a Riordan array) related to tennis ball problem, read by rows.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 0, 3, 2, 1, 6, 6, 6, 3, 1, 0, 22, 16, 10, 4, 1, 53, 53, 53, 31, 15, 5, 1, 0, 211, 158, 105, 52, 21, 6, 1, 554, 554, 554, 343, 185, 80, 28, 7, 1, 0, 2306, 1752, 1198, 644, 301, 116, 36, 8, 1, 6362, 6362, 6362, 4056, 2304, 1106, 462, 161, 45, 9, 1
Offset: 0
Triangle starts
1;
0, 1;
1, 1, 1;
0, 3, 2, 1;
6, 6, 6, 3, 1;
0, 22, 16, 10, 4, 1;
53, 53, 53, 31, 15, 5, 1;
0, 211, 158, 105, 52, 21, 6, 1;
554, 554, 554, 343, 185, 80, 28, 7, 1;
0, 2306, 1752, 1198, 644, 301, 116, 36, 8, 1;
6362, 6362, 6362, 4056, 2304, 1106, 462, 161, 45, 9, 1;
First column is
A066357 interspersed with 0's, 2nd column gives
A079514.
-
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r; Table[SeriesCoefficient[Series[g[t, k], {t, 0, n}], n], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 16 2019 *)
A079515
Coefficients related to tennis ball problem.
Original entry on oeis.org
1, 10, 105, 1198, 14506, 183284, 2390121, 31933830, 434920398, 6016012236, 84289034154, 1193717733900, 17060985356980, 245768668712296, 3564709196133737, 52015567131639798, 763050542202081318, 11246882679872658140, 166478073780305341390, 2473696423451621878180
Offset: 0
-
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r + 1)*c[t]^(r+3); CoefficientList[Series[g[t, 0], {t, 0, 60}], t][[2 ;; ;; 2]] (* G. C. Greubel, Jan 16 2019 *)
A079516
Coefficients related to tennis ball problem.
Original entry on oeis.org
1, 15, 185, 2304, 29482, 386945, 5188169, 70803164, 980545070, 13747777966, 194776025482, 2784380900560, 40113386761524, 581823363803941, 8489505340500521, 124528817146723876, 1835299404114540102, 27163404479642455346, 403573421012802035630
Offset: 0
-
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] - (1-2*t)*Sqrt[1+4*t] + Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r+1)*c[t]^(r+3); Drop[CoefficientList[Series[g[t, 1], {t, 0, 60}], t][[1 ;; ;; 2]], 1] (* G. C. Greubel, Jan 16 2019 *)
A079517
Coefficients related to tennis ball problem.
Original entry on oeis.org
1, 21, 301, 4088, 55354, 756059, 10442117, 145803900, 2056351566, 29262470042, 419730456306, 6062949606496, 88127311401876, 1288120149337735, 18922077118169717, 279209456350438708, 4136682188907493702, 61513664658938124486, 917795824360157700870
Offset: 0
-
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r+1)*c[t]^(r+3); Drop[CoefficientList[Series[g[t, 2], {t, 0, 60}], t][[2 ;; ;; 2]], 1] (* G. C. Greubel, Jan 16 2019 *)
A079518
Coefficients related to tennis ball problem.
Original entry on oeis.org
1, 28, 462, 6832, 97957, 1394180, 19862674, 284156608, 4086496362, 59089988216, 858975619676, 12549322976672, 184195104642157, 2715174884250004, 40181870424263146, 596810833742837536, 8893877150513222014, 132947157383427373320, 1992954280253792526660
Offset: 0
-
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1- 2*t)*Sqrt[1+4*t] + Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r+1)*c[t]^(r+3); Drop[CoefficientList[Series[g[t, 3], {t,0,60}], t][[1;; ;;2]], 2] (* G. C. Greubel, Jan 16 2019 *)
A079519
Related to tennis ball problem.
Original entry on oeis.org
12, 284, 5436, 96768, 1664184, 28069444, 467722524, 7730252080, 127023181352, 2078332922360, 33894711502744, 551368536346176, 8950922822411504, 145068948446193428, 2347940754318431196, 37957946888159573968, 613052225104703442120, 9893099103451554441736
Offset: 1
G.f. = 12*t^2 + 284*t^4 + 5436*t^6 + 96768*t^8 + ... - _G. C. Greubel_, Jan 17 2019
-
f[t_]:= Sqrt[1-4*t]; g[t_]:= Sqrt[1+4*t]; S1[t_]:= (1+f[t]-2*f[t]^2)*(1- f[t])^5/(t^3*(f[t]^2-f[t])^2*(2+f[t]+g[t])^2); S3[t_]:= 4*(1-f[t])^2*(1 -g[t])^2*(f[t]^2-(1+2*t)*f[t]-(1-6*t)*g[t]+f[t]*g[t])/(t^3*(2+f[t]+ g[t])^2*(g[t]^2-f[t]-g[t]+f[t]*g[t])^2); W[t_]:= (S1[t]+S1[-t]+S3[t]+ S3[-t])/4; Drop[CoefficientList[Series[W[t], {t, 0, 50}], t][[1 ;; ;; 2]], 1] (* G. C. Greubel, Jan 17 2019 *)
Showing 1-6 of 6 results.
Comments