cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079520 Triangular array related to tennis ball problem, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 10, 0, 1, 5, 15, 31, 0, 1, 6, 21, 52, 105, 0, 1, 7, 28, 80, 185, 343, 0, 1, 8, 36, 116, 301, 644, 1198, 0, 1, 9, 45, 161, 462, 1106, 2304, 4056, 0, 1, 10, 55, 216, 678, 1784, 4088, 8144, 14506, 0, 1, 11, 66, 282, 960, 2744, 6832, 14976, 29482, 50350
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2003

Keywords

Comments

Rows have been reversed.

Examples

			0.
0, 1.
0, 1, 3.
0, 1, 4, 10.
0, 1, 5, 15, 31.
0, 1, 6, 21, 52, 105. ...
		

Crossrefs

Leading diagonal gives A079522.
Cf. A079513.

Programs

  • Mathematica
    c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1- 2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r+1) *c[t]^(r+3); Table[SeriesCoefficient[Series[g[t, n-k], {t, 0, n}], n], {n, 0, 12}, {k, 0, n}]//Flatten  (* G. C. Greubel, Jan 17 2019 *)

Formula

Let c, d, and g be given by: c(t) = (1-sqrt(1-4*t))/(2*t), d(t) = (1-(1+2*t)*sqrt(1-4*t) -(1- 2*t)*sqrt(1+4*t) +sqrt(1-16*t^2))/(4*t^2), and g(t, r) = d(t)*t^(r+1)*c(t)^(r+3). The rows of the triangle are calculated by the expansion of g(t, n-k) for n>=0, 0 <= k <= n. - G. C. Greubel, Jan 17 2019

Extensions

Terms a(29) onward added by G. C. Greubel, Jan 17 2019