cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079521 Triangular array related to tennis ball problem, read by rows.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 10, 16, 13, 6, 31, 47, 45, 25, 8, 105, 158, 145, 96, 41, 10, 343, 501, 500, 340, 175, 61, 12, 1198, 1752, 1673, 1226, 676, 288, 85, 14, 4056, 5808, 5898, 4326, 2569, 1205, 441, 113, 16, 14506, 20868, 20312, 15608, 9526, 4836, 1987, 640, 145, 18, 50350, 71218, 73000, 55696, 35448, 18800, 8418, 3090, 891, 181, 20
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2003

Keywords

Examples

			0.
1,   2.
3,   5,   4.
10,  16,  13,  6.
31,  47,  45,  25, 8.
105, 158, 145, 96, 41, 10. ...
		

Crossrefs

Leading diagonal gives A079522.

Programs

  • Mathematica
    c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t]-(1- 2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r*(t*c[t]^3 +2*r*c[t]); Table[SeriesCoefficient[Series[g[t, k], {t, 0, n}], n], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Jan 17 2019 *)

Formula

Let c, d, and g be given by: c(t) = (1-sqrt(1-4*t))/(2*t), d(t) = (1-(1+ 2*t)*sqrt(1-4*t) -(1-2*t)*sqrt(1+4*t) +sqrt(1-16*t^2))/(4*t^2), and
g(t, r) = d(t)*(t*c(t))^r*(t*c(t)^3 + 2*r*c(t)) then the rows are calculated by the expansion of g(t,k) for n>=0, 0 <= k <= n. - G. C. Greubel, Jan 17 2019

Extensions

Terms a(28) onward added by G. C. Greubel, Jan 17 2019