cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079579 Totally multiplicative with p -> (p-1)*p, p prime.

Original entry on oeis.org

1, 2, 6, 4, 20, 12, 42, 8, 36, 40, 110, 24, 156, 84, 120, 16, 272, 72, 342, 80, 252, 220, 506, 48, 400, 312, 216, 168, 812, 240, 930, 32, 660, 544, 840, 144, 1332, 684, 936, 160, 1640, 504, 1806, 440, 720, 1012, 2162, 96, 1764, 800, 1632, 624, 2756, 432, 2200, 336
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 24 2003

Keywords

Comments

The Dirichlet inverse is 1, -2, -6, 0, -20, 12, -42, 0, 0, 40, -110, 0, -156, 84, 120, 0, -272, ..., i.e., the sequence defined by mu(n)*a(n). - R. J. Mathar, Dec 20 2011

Crossrefs

Programs

  • Haskell
    a079579 1 = 1
    a079579 n = product $ zipWith (*) pfs $ map (subtract 1) pfs
       where pfs = a027746_row n
    -- Reinhard Zumkeller, Jan 05 2012
    
  • Mathematica
    f[p_, e_] := ((p - 1)*p)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Oct 23 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]*(f[i,1]-1))^f[i,2]); } \\ Amiram Eldar, Oct 23 2022

Formula

a(n) <= n^2.
a(n) = n iff n = 2^k.
a(n) = n*A003958(n).
Multiplicative sequence with a(p^e) = p^e*(p-1)^e for prime p. - Jaroslav Krizek, Nov 01 2009
Dirichlet g.f.: sum_{n>=1} a(n)/n^s = Product_{primes p} 1/(1+p^(1-s)-p^(2-s)). - R. J. Mathar, Dec 20 2011
From Amiram Eldar, Oct 23 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(6)/(3*zeta(2)*zeta(3)) = 2*Pi^4/(945*zeta(3)) = A068468 / 3 = 0.171503... .
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2-p-1)) (A065488). (End)