A079638 Matrix product of unsigned Lah-triangle |A008297(n,k)| and unsigned Stirling1-triangle |A008275(n,k)|.
1, 3, 1, 14, 9, 1, 90, 83, 18, 1, 744, 870, 275, 30, 1, 7560, 10474, 4275, 685, 45, 1, 91440, 143892, 70924, 14805, 1435, 63, 1, 1285200, 2233356, 1274196, 324289, 41160, 2674, 84, 1, 20603520, 38769840, 24870572, 7398972, 1151409, 98280, 4578
Offset: 1
Examples
Triangle begins 1; 3, 1; 14, 9, 1; 90, 83, 18, 1; 744, 870, 275, 30, 1; 7560, 10474, 4275, 685, 45, 1; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1225 (rows n = 1..50, flattened).
- William Keith, Rishi Nath, and James Sellers, On simultaneous (s, s+t, s+2t, ...)-core partitions, arXiv:2508.00074 [math.CO], 2025. See p. 3.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1, 0, 0, 0, ..) as column 0. BellMatrix(n -> n!*(2^(n+1)-1), 9); # Peter Luschny, Jan 26 2016
-
Mathematica
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[Function[n, n! (2^(n + 1) - 1)], rows = 12]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
Formula
E.g.f.: ((1-x)/(1-2*x))^y. - Vladeta Jovovic, Nov 22 2003
Comments